
INTRODUCTION TO CATEGORICAL LOGIC
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1. Motivation

We want to discuss Logic “from scratch” – that is, without any assumptions about any
notions the reader may have of what logic is about or what “mathematical logic” is as a
field.

We start simply by saying that logic is some part of our experience of reality that we
want to understand – something to do with our capacity for thought, and the fact that our
thought seems to have some kind of structure, or follow some kind of rules. We first want
to identify (at least as a first approximation) what logic is about. As an analogy, physics is
also about a part of our experience of reality. Our basic intuition about physics is that it is
about physical objects – books, chairs, balls, and the like – and their properties. Indeed, the
first (mathematical) physical theories – those of Galileo, Descartes, and Newton – describe
the motion of such objects, the forces which act upon them, and so forth. Later, the kinds
of things studied by physics – for example fields and thermodynamics systems – become
more refined and complicated.

Similarly, we start with a simple view of what logic is about, allowing for refinements later
on: logic is primarily about propositions and their truth. That is: it is a basic phenomenon
that people make statements, and sometimes we observe them to be true (or false), and
sometimes it is not immediately clear whether they are true, but we can decide it after some
consideration. In logic, then, we are trying to investigate the relation of propositions to
their truth, and to our capacity for deciding it.

Before continuing, let us say now what we only mentioned at the end of the talk: in
the following, we will make free use of the concepts and constructions from usual modern
mathematical practice. We will defining things called “logical operations” and something
else called “sets”, but we are not by any means trying to define the very notions we are
making use of in discussing these things. That activity – namely, the absolutely primitive
and self-contained explication of mathematical reasoning – is the development of the foun-
dations of mathematics; it is also a very interesting and (for its purposes) important task.
It is simply not what we are doing in this talk.

2. Setup

We begin then by positing as the basic ingredients of our theory:

(1) A set Ω̂ of propositions
(2) A set 2 = {T, F} of truth values (which we call “True” and “False”), and

(3) A valuation function v : Ω̂→ 2, which we think of as assigning to each proposition
its truth value

Of course, we don’t mean to imply that for any given proposition, we know what its truth
value is, but we take it for granted that it has some truth value regardless.

Next, we note the important phenomenon of hypothetical reasoning ; that is, we can
often conclude that one proposition must be true under the assumption that another is
true, without knowing whether either of the propositions at hand actually is true. This we
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describe by a binary relation P ≤ Q on Ω̂, with the property that if P ≤ Q, then v(P ) = T
implies v(Q) = T (and hence also v(Q) = F implies v(P ) = F ). We immediately see
that we should take ≤ to be transitive and reflexive, thus making it into a preorder. We
might also want to impose that its a partial order – i.e., anti-symmetric – but this isn’t quite
natural; there can easily be two propositions which imply each other (and are hence logically

equivalent) but not identical. However, as always, we can form a quotient preorder Ω of Ω̂
by identifying equivalent elements, which is a partial order. It is often more convenient to
work with Ω.

It is also convenient to put an ordering on 2, by declaring that F < T , so that the function
v is order-preserving. Since 2 is in fact a partial order, v factors through Ω:

Ω̂
v //

�� ��

2

Ω
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We next turn to the well known logical connectives, with which we can combine proposi-
tions to form a new one whose truth value is in a certain definite relation to the truth values
of the original propositions. The easiest (though by no means necessary) way to describe

this is to note that Ω̂, being a preorder, is also a category ; namely, the one whose objects are
the elements of the preorder and such that there is a unique arrow P → Q whenever P ≤ Q.
The existence of composites and identities corresponds to the reflexivity and transitivity of
the preorder.

First, we consider logical conjunction (“and”). The fact that we can form the con-

junction of any two propositions corresponds to the assumption that our category Ω̂ has
products. That is, for any propositions P,Q, there is a proposition P ∧Q with “projections”
P ← P ∧Q→ Q (i.e., such that (P ∧Q) ≤ P,Q) and such that we can always complete the
following diagram uniquely with a dotted arrow

P Q

P ∧Q

bb <<

R

YY EE

OO

Some reflection will reveal that this does indeed capture our intuition concerning the meaning
of conjunction.

Of course, the uniqueness of the dotted arrow above is unimportant since we are dealing
with a preorder. It is more convenient to write the defining property of P ∧Q in terms of
its “adjunction relation”:

R ≤ P,Q
R ≤ (P ∧Q)

where the horizontal line indicates “if and only if”.
Note that the defining property of P ∧Q (and of the other connectives below) does not

determine it uniquely, but only up to equivalence. This is quite natural, as there is in general
not a unique proposition expressing the logical conjunction of two others.
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Next, we have disjunction (“or”). This corresponds to requiring Ω̂ to have coproducts,
and is given by the adjunction relation:

P,Q ≤ R
(P ∨Q) ≤ R

We also demand that Ω̂ has a terminal object ; i.e. an object 1 such that P ≤ 1 for all
P . This corresponds to the fact that there are tautologies – that is, propositions which are
vacuously true – which can be deduced under the assumption of any proposition whatsoever.

Similarly, there are absurdities – propositions which are vacuously false. It is less clear a
priori, but is nonetheless confirmed by experience, that we can deduce anything whatsoever

once we assume an absurdity. Hence, we assume that Ω̂ also has an initial object.
Next, we can form the implication between two propositions – that is, the proposition

that one proposition follows from another. This is seen to be described by the adjunction
relation

P ∧Q ≤ R
P ≤ (Q⇒ R)

Note that we can deduce “modus ponens”; i.e., the fact that (P ∧ (P ⇒ Q)) ≤ Q for any P
and Q.

Next, we have negation. This can be defined using implication and absurdity by saying
that to negate a proposition is to say that it implies an absurdity: ¬P := (P ⇒ ⊥). It
follows immediately from this (by modus ponens) that P ∧¬P ≤ ⊥; anything together with
its negation implies an absurdity. Although this definition of negation determines ¬P up
to isomorphism, it does not follow from this that ¬(¬P ) is equivalent to P , as we might
expect. Therefore, we impose this as an extra condition. We will have more to say about
this later on. Once we assume ¬(¬P ) it can be shown that P ⇒ Q is equivalent to ¬P ∨Q
for every P,Q.

The structure defined above on Ω̂ induces the same structure on Ω, turning the latter into
a so-called Boolean algebra, which is exactly a partial order with all the above-mentioned
properties (that is, finite products and coproducts, implications and negations)1. This
structure can also be defined algebraically, as a set with three binary operations ∧,∨,⇒
and two constants 0, 1 satisfying certain laws. It follows from the laws that the conditions
P ∧ Q = P , P ∨ Q = Q, and P ⇒ Q = 1 are all equivalent, and if we define P ≤ Q to be
given by this condition, we find that it is a partial order having the properties of a Boolean
algebra for which the operations ∨,∧,⇒ and the elements 0, 1 are the ones we started with.
We will not give the laws here, since we will not need them – however, as a very inefficient
set of laws, we could simply take every equation which holds in all Boolean algebras.

Let us call the corresponding structure on Ω̂ a Boolean prealgebra; that is, a Boolean
prealgebra is a preorder whose quotient partial order is a Boolean algebra.

It is easy to see that 2, with its ordering, is also a Boolean algebra, for which the operations
are the usual Boolean operations familiar from computer science. In fact, there is an obvious
category of Boolean algebras (the morphisms are the functions which preserve the operations
∧,∨,⇒), in which 2 is an initial object. The reason is that any morphism out of 2 must
send F to 0 and T to 1, and this of course determines the morphism completely.

2.1. Truth tables. Let us now consider a very general example of the kind of structure we

might find inside Ω̂. Let us assume that there are n propositions P1, . . . , Pn ∈ Ω̂ that are
“logically independent”, in the sense that the truth of any of them has no bearing on the
truth of any of the others (for example, P1 might be “It rained in Tokyo on September 23,

1There is actually one more law, namely the distributive law, which says that ∧ and ∨ distribute over

each other.
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1972” and P2 might be “Every even number is the sum of two primes”, etc.); in particular,

we should not have Pi ≤ Pj for any i 6= j. We let them generate a subset B ⊂ Ω̂, in the

sense that B is a minimal subset of Ω̂ containing P1, . . . , Pn and closed under conjunction,
disjunction, and negation. We find that the ordering restricted to B is in fact a partial
order ; that is, B is a Boolean algebra and, corresponding to the assumption that the Pi
are “logically independent”, we suppose that B is free on the generators P1, . . . , Pn. This
means that any n elements a1, . . . , an of a Boolean algebra B′ determine a unique Boolean
algebra homomorphism B → B′ sending Pi to ai for each i. In particular, letting B′ = 2,
we find that the value of v on the elements of B is determined by its value on the Pi. The
algorithm by which v(P ) can be calculated given the v(Pi) is the well known method of
“truth tables”.

3. Things

3.1. An insight. We now make the crucial observation – which was surely recognized
intuitively for a long time, but first made explicit by Gottlob Frege and his contemporaries
– that propositions are about things. This corresponds to the fact that grammatically correct
sentences have a subject and a predicate.

Following Frege, we assume there is a set U which contains all the things; that is, U
contains everything you might ever want to make a statement about. We then define a

predicate P to be a function U → Ω̂ which assigns to each thing x a proposition P (x).
Hence, if P is the predicate “is at the center of the universe” and x is the thing “The
earth”, then P (x) is the proposition “The earth is at the center of the universe”. Similarly,

an n-ary relation is a function Un → Ω̂; for example, “is at the center of” is a binary

relation. We denote the set of n-ary relations by Ω̂n.

The preorder on Ω̂ induces one on Ω̂n by comparing two relations “pointwise”; that is, we
say that P ≤ Q if P (a) ≤ Q(a) for each a ∈ U . We can again identify equivalent elements
under this preorder to obtain a set Ωn, which can also be defined as the set of functions from
Un to Ω. The set Ωn with the induced ordering is immediately seen to be a Boolean algebra,

where the operations ∧,∨,¬ are given “pointwise”. Similarly, Ω̂n is a Boolean prealgebra.

Note that Ω̂0 is isomorphic to Ω̂.

Given n things a1, . . . , ak ∈ U , we get an “evaluation” homomorphism Ω̂k → Ω̂ (or

Ωk → Ω), which we can compose with v : Ω̂ → 2 to obtain a homomorphism Ω̂n → 2
indicating for each relation whether it holds of a1, . . . , an. We also more generally obtain

homomorphisms Ω̂n → Ω̂n−k by “partially evaluating”.
The first and most important example of a relation is equality. That is, we assume the

existence of a particular predicate eq : U2 → Ω̂ such that eq(a, a) is tautologous (reflexivity),
eq(a, b) ≤ eq(b, a) (symmetry) and eq(a, b)∧ eq(b, c) ≤ eq(a, c) (transitivity) for a, b, c ∈ U .2

3.2. Some model theory. We now consider an example of the kind of thing we might

expect to find in Ω̂n. Let us suppose that natural numbers are things, i.e. that N ⊆ U ,
and let us restrict our attention to predicates and relations about the natural numbers.

More precisely, we consider those relations R ∈ Ω̂n which are “supported on N”, i.e. such
that R(a1, . . . , an) is absurd whenever some ai /∈ N. We denote the set of n-ary relations

supported on N by Ω̂N
n. It is easy to see that Ω̂N

n, with the restricted preorder, is a Boolean

2It might seem that in addition to the assumption that eq(a, a) is always tautologous, we should also have
that eq(a, b) is always absurd (or at least false) whenever a and b are distinct elements of U . However, there

are clearly statements of the form “a is equal to b” which are true even though a and b are not identical.
What this indicates is that we should not really think of U as the set of things, but rather as the set of
“descriptions of things”.
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prealgebra in its own right. A maximal element R(x1, . . . , xn) of Ω̂N
n is one which says

exactly “x1, . . . , xn are natural numbers” – i.e., which is tautologous whenever each xi ∈ N
and absurd otherwise.3

A typical example of something we might find in Ω̂3, say, is “x plus y equals z”. We

can more generally consider the subalgebra Ĉn of Ω̂N
n consisting of all of the “arithmetic

relations”. That is, it is the smallest subset closed under conjunction, disjunction, and
negation and which contains, for each pair p(x1, . . . , xn), q(x1, . . . , xn) of polynomials with
coefficients in N, the proposition eq(p(x1, . . . , xn), q(x1, . . . , xn))4. We denote by Cn the

image of Ĉn in Ωn.
We now give an alternative construction of Cn. Let Fn = N[x1, . . . , xn] be the semi-ring5

of polynomials in n variables with coefficients in N, and let Bn be the Boolean algebra freely
generated by the set Fn×Fn of pairs of polynomials (where we think of the pair (p, q) as the
equation “p = q”). Notice that, unlike in the free Boolean algebra considered in Section 2.1,
the generators here are (intuitively speaking) not “logically independent”. For example, we
should have that (p, q) ≤ (q, p) for any polynomials p and q. That is, we have the “wrong”
Boolean algebra.

However, we can associate to a pair (p, q) ∈ Fn×Fn the predicate defined above sending
a1, . . . , an to eq(p(a1, . . . , an), q(a1, . . . , an)). Since Bn is free, this assignment of generators
determines a unique morphism Bn → Ωn. The image of this is of course precisely Cn.

Now, Boolean algebras satisfy the usual “first isomorphism theorem” from algebra. That
is, associated to the morphism Bn → Ωn there is a “kernel”, namely the set of all elements of
Bn whose image is 1. A set of this form – that is one arising as the kernel of a homomorphism
– is called an ultrafilter. We can then form a quotient Boolean-algebra B′n by identifying
elements p and q whenever p⇒ q and q ⇒ p are both in the ultrafilter. As usual, we get that
the quotient of Bn by this ultrafilter is isomorphic to the image of the original morphism:

Ωn

Bn // //

    

==

Cn
0 P

aa

B′n

∼=

>>

Now, for each tuple (a1, . . . , an) ∈ Nn, we obtain a morphism Bn → 2 by the composite

Bn → Cn ↪→ Ωn → Ω
v−→ 2

3Every 0-ary relation – i.e., proposition – is supported on N and hence “about the natural numbers”

according to this definition. It therefore seems better to treat the 0-ary case of “the set of propositions about
natural numbers” separately and define it as the set of all propositions R(n1, . . . , nk) where R is a relation

about natural numbers (with k ≥ 1) and n1, . . . , nk ∈ N. Note that these form a Boolean prealgebra.
4There is a subtle distinction here related to footnote 2 above. Namely, there are two ways of under-

standing what is meant, say, by “the predicate taking x, y to, eq(x10000, y5000)”. On the one hand, we may

mean the predicate which evaluates eq on the numbers x10000 and y5000. But it seems better to consider
“x raised to the 10000th power” and “y raised to the 5000th power” themselves as things, distinct from

the numbers x10000 and y5000, and that it is these things on which eq is being evaluated. Of course, for a
given x, we should expect the proposition eq(x10000, “x raised to the 10000th power”) to be true (though
probably not tautologous).

5By a semi-ring (which we should perhaps call a “commutative, unital semi-ring”) we mean a set with
two binary operations (“addition” and “multiplication”) such that each one is associative, addition is com-
mutative, and multiplication distributes over addition.
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where the third morphism is “evaluation at (a1, . . . , an)”. This composite says whether the
given arithmetic relation is true for the given tuple.

We now note that there is nothing special about N for the above construction. Any n
elements a1, . . . , an of any semi-ring R whatsoever determine a unique morphism f : Fn → R
sending xi to ai for each i. We can then define a morphism Bn → 2 by sending the generator
(p, q) to T if f(p) = f(q) and F otherwise. The corresponding morphism Bn → 2 then says
for each element of Bn whether the given arithmetic relation holds for a1, . . . , an ∈ R.

Now, for each such choice of R and a1, . . . , an, we get an ultrafilter by taking the kernel
of the associated morphism Bn → 2. It is easily seen that the intersection of an arbitrary
family of ultrafilters is again an ultrafilter. Let us take the intersection of all these ultrafilters
and denote by B̄n the quotient by it. We then clearly have that each morphism Bn → 2
described above factors through B̄n.

Conversely, it can be shown that any morphism B̄n → 2 whatsoever arises in this way (we
leave this as an exercise). Thus, B̄n in some sense captures the “theory of n-ary arithmetic
relations on semi-rings”.

Now, for a fixed semi-ring R we can factor the associated morphisms B̄n → 2 as follows.
We first note that the set P(X) of subsets of any set X naturally carries the structure of
a Boolean algebra, where the ordering is the subset relation, and conjunction, disjunction,
and negation are given by intersection, union, and complement, respectively. Given any
element a ∈ X, we obtain a morphism X → 2 which indicates for a given subset whether it
contains a.

We now define a morphism B̄n → P(Rn) by sending each relation in B̄n to the set of
tuples of Rn for which it holds. The morphisms B̄n → 2 associated to R and a tuple
(a1, . . . , an) is then the composite

B̄n → P(Rn)→ 2

where the second morphism is the one associated to the element (a1, . . . , an) ∈ Rn.
This provides a certain intuition about the meaning of B̄n. Namely, we can think of

its elements as being certain subsets of (the n-th cartesian product of) a “generic semi-
ring” – namely the “arithmetically definable” ones. Given any semi-ring R, the morphism
B̄n → P(Rn) then realizes each such “generic” arithmetically definable subset as an actual
arithmetically definable subset of Rn. We will make this intuition somewhat more precise
later.

We note however that there is something unsatisfying about the present setup. Namely,
whereas the morphisms B̄n → 2 were exactly the ones arising from an n-tuple of elements
of a ring, it is by no means the case that every morphism from B̄n to a Boolean algebra
arises as one of these morphisms B̄n → P(Rn) for some semi-ring R. There is an additional
mystery which is that, given a semi-ring R, we get a morphism B̄n → P(Rn) for each n, but
these don’t seem to fit together in any interesting or coherent way. Both of these mysteries
will be resolved later, once we switch to a more categorical perspective.

3.3. Quantification. Returning to the general story, we now introduce the last important
propositional constructions, namely the quantifiers “for all” and “there exists”. Before
diving into this, we want to describe a certain thesis – which we call “Frege’s thesis”6

associated to the system obtained by adjoining the quantifiers to the Boolean operations
that we have already introduced. The thesis is that the system thus obtained – which Frege
called a “formal language of thought”, and which we now call “first-order logic” – along with

6I have since discovered that some people call this “Hilbert’s thesis”, which is presumably more appro-

priate/historically accurate.
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its associated rules, in some sense completely captures the phenomenon of logical reasoning.
We will return to this below.

The significant feature of quantification which was absent in the logical constructions
introduced thus far is that it involves an interplay between the Ωn for different values of n.

For example, if R(x, y, z) is a ternary relation – i.e., an element of Ω̂3, then ∀z : R(x, y, z)

should be an element of Ω̂2.
We should first note the connections between the various Ω̂n which are already present in

what we have introduced so far. These are best seen by first observing that the definition of

Ω̂n given above (and in the talk) – namely, as the set of all functions Un → Ω̂ whatsoever,
is both unnecessary and also unnatural, since it allows predicates which assign completely
unrelated propositions to different things.

Rather, we should only demand that Ω̂n be a certain subset of the set of functions

Un → Ω̂, whereupon certain “closure conditions” naturally suggest themselves. First, we

still have, as before, an induced preorder on Ω̂n, but we must now demand that this preorder

turn Ω̂n into a Boolean prealgebra (moreover – we’re not sure if this follows automatically

– the operations ∧,∨,¬ should be given by applying them pointwise in Ω̂). The second

condition is that given an n-ary relation R ∈ Ω̂n and a function σ : {1, . . . , n} → {1, . . . , k},
the function Uk → Ω̂ which sends a1, . . . , ak to R(aσ(1), . . . , aσ(n)) should be a k-ary relation.
The third condition is similar: it is that we should be able to view an n-ary relation as an
(n+ 1)-ary relation by ignoring one of the arguments.

More precisely, we have a function πı̂ : Un+1 → Un obtained by projecting onto all but
the i-th factor (where 1 ≤ i ≤ n+ 1). The condition, then, is that for each n-ary relation

R : Un → Ω̂, the composite (R ◦ πı̂) : Un+1 → Ω̂ is an (n+ 1)-ary relation.
This last condition brings us directly to the definition of quantifiers. Namely, the above-

described operation si : Ω̂n → Ω̂n+1 obtained by composing with πı̂ preserves the preorder,
and hence defines a functor. Demanding that the relations be closed under quantification is
then seem simply to amount to asking that this functor has a left and right adjoint.

More explicitly, this means that (say) the existential quantifier ∃ should be characterized

by the following condition. If φ ∈ Ω̂n+1 and ψ ∈ Ω̂n, then we should have

φ ≤ (siψ)

∃xi : φ ≤ ψ
where the horizontal line as usual means “if and only if”. This is best understood by staring
at and pondering over it for a while, but we will try our best to explain it.

We recall that the preorder on k-ary relations is defined so that R ≤ S if and only if
R(b1, . . . , bk) ≤ S(b1, . . . , bk) for every possible choice of b1, . . . , bk ∈ U . Hence, the condition
above the line is that

φ(x1, . . . , xn+1) ≤ ψ(x1, . . . , x̂i, . . . , xn+1)

(where x̂i indicates that the argument xi is omitted) for every choice of x1, . . . , xn+1. But
since the right side does not depend on xi, it is clear that it will follows as soon as there
is some xi for which φ(x1, . . . , xn+1). But this amounts (according to our intuitive under-
standing of the symbol ∃) to the condition that

∃xi : φ(x1, . . . , xn+1) ≤ ψ(x1, . . . , x̂i, . . . , xn+1)

for every x1, . . . , x̂i, . . . , xn+1, which is precisely the condition below the line.
Similarly, universal quantification is defined by the condition

(siψ) ≤ φ
ψ ≤ ∀xi : φ
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Again, this is seen to correspond to our intuition: if

ψ(x1, . . . , x̂i, . . . , xn+1) ≤ φ(x1, . . . , xn+1)

for every possible possible value of x1, . . . , xn+1 then, since the left side does not depend on
xi, we have that for a fixed x1, . . . , x̂i, . . . , xn+1 ∈ U , φ(x1, . . . , xn+1) will hold for every xi
as soon as ψ(x1, . . . , x̂i, . . . , xn+1) holds.

Hence, we add to our list of assumptions that these adjoints exist for every si : Ω̂n →
Ω̂n+1.

Returning now to Frege’s thesis, we note that it has two parts

(1) Every mathematical statement that can be expressed can be expressed in the lan-
guage of first-order logic

(2) Every true mathematical statement can be proven using the rules of first-order logic

The first statement is something like the famous Church-Turing thesis (which says that
everything which can be effectively computed can be computed by a Turing machine), in
that it involves an undefined term – here “mathematical statement that can be expressed” –
and hence cannot be proven. Rather, we can only ask the empirical question of whether any
mathematical statement that anyone has expressed so far can be expressed in first-order
logic. Here, the answer is yes, though with the important qualification that the language
be extended with a vocabulary for describing the mathematical objects under consideration;
in particular, it is very important that we be able to talk about sets (as we will describe
in the next section). In fact, the amazing discovery of Frege, Georg Cantor, and their
contemporaries is that the only thing you need to be able to talk about is sets.

The second statement, on the other hand, can be given a rigorous formulation, by formu-
lating a suitable definition of truth (as we have been trying to do), and also of provability
(that is, provability according to the rules of first-order logic). When this is done, the second
statement is confirmed, and goes under the name of Gödel’s completeness theorem.

4. Sets

Let us now return to the set U of things, and introduce a more general assumption about
it than the one above (that it includes the natural numbers).

First, we suppose that certain things are sets. That is, we suppose that there is a binary

relation ε ∈ Ω̂2 which we call “membership”, so that we read aεb as “b is a set and a is a
member of b”.

Following Cantor and Frege, we then make the following assumption on U : that for each

predicate p ∈ Ω̂1, there is a (unique) thing [p] ∈ U such that for every thing a ∈ U , we have
aε[p] ∼= p(a). That is, [p] is the “set of all things satisfying p”.

Now, this axiom, which is called “unrestricted comprehension” is extremely powerful,
as Frege demonstrated. Its repeated application allows for the generation of all known
mathematical objects.

As an example, we can define the natural numbers as sets using the “Von Neumann
encoding”. We define 0 to be the empty set, which can be defined using comprehension as
[p] where p is an absurdity. We then define the successor of the Von Neumann number n
to be [p], where p(x) = (xεn) ∨ eq(x, n). We then have that the set encoding n is equal to
{0, . . . , n− 1}.

In like manner, one can go on to define addition and multiplication of natural numbers,
the rational and real numbers, as well as everything else. We will not say any more about
this, but it is explained in any text on set-theoretical foundations.
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As a matter of fact, the principle of unrestricted comprehension is far too powerful, in
that you can use it to prove literally everything – that is to say, it is inconsistent! We are
referring, of course, to the famous “Russell’s paradox”, which we now describe.

Let us define the predicate q by q(x) = ¬(xεx). We then have

[q]ε[q] ∼= q([q]) ∼= ¬([q]ε[q])

That is, we have that the element [q]ε[q] of Ω̂ is equivalent to its negation. It is easily seen
that this can never happen in a Boolean (pre)algebra. Hence, we conclude that there simply

cannot be for each predicate p ∈ Ω̂1 a thing [p] ∈ U with the desired property.
However, we do not actually need, in practice, the comprehension principle for any pred-

icate p whatsoever, but only for certain ones, for example the ones arising in the above
construction of the natural numbers. Hence, instead of taking the full unrestricted compre-
hension principle, we can try to identify a certain set of special cases which suffice for all
practical purposes, but which (at least appear to) exclude the construction needed for Rus-
sell’s paradox. Doing so, one arrives at the modern system of axiomatic set theory, which
allows one in a very satisfactory manner to formulate and prove all known mathematical
statements, as promised by Frege.

It should be mentioned that when these set-theoretical axioms are used as a foundation for
mathematics, they are of course not described, as they were here, in terms of sets. Rather,
it is done completely “linguistically”; one constructs a certain formal system consisting of
strings of symbols and rules for manipulating them which, intuitively, represent the objects
we have been discussing here. However, as mentioned in the introduction, it is not our goal
to discuss these foundational aspects here.

It seems, then, that we’ve wrapped up everything very nicely. We have our set of things,
which contains sets and with it all the mathematical objects. However, let us not forget

the lingering mystery from before, about connecting the various ¯̄Bn in order to produce an
object which more fully embodies the “theory of rings”...

5. Topoi

5.1. A fresh start. We will now make a somewhat confusing change of perspective, so
please bear with me.

In our previous discussion, there were two notions of set. First, there was the “ambient”
notion. This is the one we used from the very beginning of our discussion, in saying things
like “Ω is a set with such and such additional structure” and “we introduce a set U which
we call the set of things”. We did not make the notion explicit, but relied on our mutual
understanding of which operations on sets are admissible, and what their properties are.
This is of course the tacit assumption that goes into usual every-day discussion about
mathematical topics and – as usual – although we could make our talk of sets more precise,
we do not bother to do so because it is irrelevant for our present purposes.

On the other hand, within our discussion, we had a second notion of set. According to
this second notion, a set is a certain element of U .7

To add to the confusion, these two notions of sets are not completely incommensurable;
sometimes we can compare a set in the ambient sense, to the “sets” in U . Namely, given
any subset S ⊂ U , we can ask if there is an element s ∈ U for which xεs is tautologous
whenever x ∈ S and is absurd otherwise. In fact, the “axioms of set theory” alluded
to above, which are special cases of the comprehension principle, ensure the existence of

7Though note that our discussion doesn’t single out precisely which elements of U are sets. Rather, it at
best allows us to define a predicate (i.e., Ω-valued function on U) P (x) which (intuitively) expresses “x is a
set”. We could then go on to single out those elements which are “definitely sets” – i.e., those x for which
P (x) is tautologous.
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such s for many subsets S ⊂ U . However, under the very reasonable assumption that the
correspondence taking S to s be injective, we see by Cantor’s theorem (which says that
the power set operation strictly increases cardinality) that there must be subsets S ⊂ U
for which there is no corresponding s. In particular, assuming the well-known “axiom of
subsets”, we have by the same argument given above (“Russell’s paradox”) that U itself
cannot be thus represented.

Of course, all these problems were unknown to Frege when he first conceived of this
picture of reality; as far as he knew, the universe U simply could be regarded as one of the
sets in U , and there was generally no serious distinction between sets in the “ambient” and
“internal” senses. However, we must acknowledge that there is such a distinction, and –
while the theory remains quite satisfactory for the purposes of doing mathematics – there is
something decidedly unsettling about being forced to carry around this distinction between
“large” and “small” sets.

So we would now like to change our perspective. Rather than assuming to begin with
a universe U of all things, and then singling out sets as specific things, we will introduce
sets right from the beginning. That is, according to our new conception, there will be no
conception of thing besides “element of a set”. In particular, our set Ω of propositions
will now be a set in the “internal” sense, and not in the “ambient” sense. As we will see
presently, our new approach will be based on categories, and the only extent to which we
will need to refer to the “ambient” sets is insofar as we need them to define categories.

5.2. Axioms. Our new definition of “set” will proceed as follows: we will impose certain
axioms on a category C which insure that all the usual operations on sets can be performed
on the objects of C, and then we will simply define a set to be an object of C. Let us now
state the relevant axioms.

Axiom 1. C has a terminal object 1C.

The terminal object is understood to be the “one element set”. The importance of this
axiom lies chiefly in that it allows us to define the notion of element ; namely, an element
of an object X is simply a morphism 1C → X. But let now us call attention to a possible
confusion which may arise: for any object X, we will now have the (ambient) set C(1C, X)
of morphisms from 1C to X – that is, of “elements of X”. We emphasize that the object
X is not in any way identified with the (ambient) set C(1C, X). They are simply different
kinds of things; one is an object of a category, the other is a set.

Axiom 2. C has binary products

This corresponds to the assumption that we should be able to form the product of any
two sets.

Axiom 3. C has exponential objects

Here, we mean “exponential objects” in the usual categorical sense – the “implication
objects” in our Boolean (pre)algebras above were special cases of this. Namely, for any
objects X,Y , there should be an object Y X and a morphism evX,Y : Y X × X → Y such
that for any object Z and morphism t : Z × X → Y , there should be a unique morphism
λXt : Z → Y X such that

Y X ×X e // Y

Z ×X

(λXt)×idX

OO

t

;;

commutes.
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This corresponds to the assumption that we should be able to form the set of functions
from any set to any other set.

It is important to note that the categorical notions “terminal object”, “product”, “ex-
ponential object” do indeed characterize – in the category Set of (ambient) sets – up to
isomorphism (that is, bijection) the one-element set, the product set, and the function set.
However, to convince ourselves that this a “reasonable” generalization of the corresponding
“ambient” notions requires some reflection: we should convince ourselves that the categori-
cal characterizations are “sufficient” in practice – i.e., that anything we might want to say
about, say, the product, follows from this characterization.

5.3. Logic. Next, we want to introduce the very important axiom of subsets, which says
that given any set X and property p, we should be able to form the set {x ∈ X | p(x)}. Of
course, to make sense of this, we have to say what we mean by “property”. We clarify this
by reintroducing Ω (the set of propositions), as promised, as an object in our category C; a
property of elements of X will then be a “predicate on X”, i.e. a morphism X → Ω.

As before, we want to impose certain natural structures (a partial order and the various
logical operations) on Ω. But how are we to do this, now that Ω is no longer a(n ambient)
set, but simply an object in our category C?

The simplest thing one could ask for is a Boolean algebra structure on the “ambient” set
C(1C,Ω). However, this is a very unnatural requirement from the viewpoint of category
theory. A more general and natural requirement is that of a Boolean algebra structure on
the ambient sets C(X,Ω) (equivalently, on the sets C(1C,Ω

X)) for all objects X of C.
Moreover, there is a naturality condition which presents itself: given two objects X and Y
and a morphism f : X → Y , composing with f produces a function f∗ : C(Y,Ω)→ C(X,Ω).
The condition is that this always be a Boolean algebra homomorphism. (This is indeed very
plausible, as f∗ is, intuitively, just the function taking each predicate “p(y)” to the predicate
“p(f(x))”).

By usual category-theoretic nonsense, this naturality condition allows us to reformulate
the whole requirement in a way which does not make any reference at all to ambient sets,
but rather only to the internal structure of the category.

For example, the requirement that there be an operation ∧X : C(X,Ω) × C(X,Ω) →
C(X,Ω) for each object X implies in particular that there is one with X = Ω× Ω:

(1) ∧Ω×Ω : C(Ω× Ω,Ω)×C(Ω× Ω,Ω)→ C(Ω× Ω,Ω)

The set on the left side of (1) is naturally in bijection with C(Ω× Ω,Ω× Ω) and therefore
contains a special element (namely the pair (π1, π2) of projections) corresponding to idΩ×Ω.
Let us denote the image in C(Ω×Ω,Ω) of this element under the function (1) simply by ∧.

The naturality condition implies that, for any object X and morphisms p, q : X → Ω,
the square

C(Ω× Ω,Ω)×C(Ω× Ω,Ω)
∧Ω×Ω //

〈p,q〉∗×〈p,q〉∗

��

C(Ω× Ω,Ω)

〈p,q〉∗

��
C(X ×X,Ω)×C(X ×X,Ω)

∧X // C(X ×X,Ω)

is commutative. Starting with the element (π1, π2) in the top left and chasing it around, we
find that

(2) p ∧X q = ∧ ◦ 〈p, q〉
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In particular, each ∧X is determined by ∧. We can then start with Ω× Ω
∧−→ Ω and define

∧X using (2). The “naturality condition” that f∗ takes ∧Y to ∧X for any f : X → Y then
follows automatically.

If we now have morphisms >,⊥ : 1 → Ω and ∧,∨,⇒: Ω × Ω → Ω, they will induce
corresponding operations on each C(X,Ω) and these will be preserved by each f∗. If we
moreover demand that the above morphisms satisfy the equations defining a Boolean algebra
– we say in this case that they make Ω into a Boolean algebra object or internal Boolean
algebra – then it follows that the operations on each C(X,Ω) make these sets into Boolean
algebras as well.

Let us now returning to the question of subsets. First, before discussing the formation
of subsets {x ∈ X | p(x)}, let us discuss the categorical substitute for the general notion of
subset.

Given an object X, a subset A of X should first of all be another object A together with

an inclusion morphism A
iA−→ X. That iA exhibits A as a subset of X is captured by the

property that any morphism Y
f̄−→ A should be determined by the composite Y

f̄−→ A
iA−→ X.

That is, for a given morphism Y
f−→ X, there should be at most one factorization

(3)

A

iA
��

Y
f
//

f̄
>>

X

This is of course the familiar categorical notion of iA being a monomorphism.
Now, given a predicate p : X → Ω, what should it mean that the subset iA : A → X is

the one {x ∈ X | p(x)} determined by p? We again characterize this by a lifting property
as in (3).

Given a morphism f : Y → X, we can compose it with p : X → Ω to obtain the predicate
p ◦ f : Y → Ω. Clearly, the image of f should land in the subset {x ∈ X|p(x)} if and only
if this predicate p ◦ f is true for every element of Y – that is, if and only if p ◦ f is equal to

the composite >Y of Y → 1C
>−→ Ω.

Thus, we say that iA : A → X is the subset determined by p if for each f : Y → X the
unique lift f̄ of (3) exists if and only if p ◦ f = >Y . This is equivalent to the following being
a pullback diagram

(4)

A //

iA
��

1C

>
��

X
p // Ω

We would now like to demand that this subset exists for every predicate p:

Axiom 4. C has pullbacks.

This seems stronger than just demanding the existence of the pullbacks (4), but assuming
Axiom 5 below characterizing Ω (which we have not yet introduced into our axioms), the
existence of general pullbacks follows from those of the form (4). Note that Axioms 1 and 4
together make Axiom 2 redundant.

Next, we observe that for any subset A of X, we should be able to form the predicate
p(x) =“x is in A” on X, and that the subset determined by p is precisely A. This corresponds
to a “converse” of the construction (4). Namely, we see that for every monomorphism
iA : A→ X, there should be a unique p : X → Ω making (4) a pullback square. An object

Ω having an element 1C
>−→ Ω satisfying this condition is called a subobject classifier.
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Axiom 5. C has a subobject classifier 1C
>−→ Ω.

We now return to the question of Ω being a Boolean algebra object. Rather remarkably,
this “almost” already follows from the axioms already introduced, though this is by no
means trivial, and we will not prove it here. The main observation is that there is a natural
ordering on the subobjects of a given object X which therefore induces a partial order on the
predicates X → Ω classifying these subobjects, and these orders are automatically preserved
by the functions f∗. It is then a matter of showing that these partial orders on each C(X,Ω)
are in fact “almost” Boolean algebras.

The reason for “almost” is that it does not follow that these partial orders are Boolean
algebra, but rather only Heyting algebras; these is a partial orders with all the structure of
a Boolean algebra, as described in Section 2, but without the condition that ¬(¬P ) = P .
Similarly, Ω is not a Boolean algebra object, but only a Heyting algebra object.

Hence, we must explicitly demand that these Heyting algebras are in fact Boolean alge-
bras. In order to be able to state this, we must define the negation morphism ¬ : Ω → Ω.
We will do this in a rough-and-ready (and incomprehensible) fashion.8

First, we have the monomorphism Ω
〈idΩ,idΩ〉−−−−−−→ Ω × Ω, which is classified by a predicate

Ω × Ω → Ω, which we denote by eqΩ. We then have the corresponding morphism λΩeqΩ :
Ω → ΩΩ. We also have the morphism >Ω×Ω : Ω × Ω → Ω as well as λΩ>Ω×Ω : Ω → ΩΩ.

Finally, we have the monomorphism ΩΩ
〈idΩΩ ,idΩΩ〉
−−−−−−−−→ ΩΩ × ΩΩ which is classified by a

predicate eqΩΩ : ΩΩ × ΩΩ → Ω. We now define ¬ : Ω→ Ω as the composite

Ω
〈λΩeqΩ,λΩ>Ω×Ω〉−−−−−−−−−−−→ ΩΩ × ΩΩ eqΩΩ−−−→ Ω

Axiom 6. ¬ : Ω→ Ω is an involution: ¬ ◦ ¬ = idΩ.

A category satisfying the Axioms 1-6 is called a Boolean topos. If Axiom 6 is omitted,
then it is just called a topos (or sometimes “elementary topos” to distinguish it from the
related (and earlier) notion of “Grothendieck topos”). There are also interesting example
of topoi which are not Boolean; we will say a little more about this below.

5.4. Freebies. There are several more axioms we might naturally want to impose, but
surprisingly, they all follow from the axioms we have so far (even omitting the Boolean
Axiom 6).

First, while we have the structure of a Boolean (or Heyting) algebra on the (ambient)
set of predicates X → Ω, we also need a “starting point” – a basic predicate from which to
build more complicated ones – namely equality. It is is clear that the subset defined by the

predicate eqX : X ×X → Ω should be X
〈idX ,idX〉−−−−−−→ X ×X (i.e., the set of all pairs (x, x)),

and so we can take this as the definition of eqX . It can then be seen that it has all the
desired properties: for example, two morphisms f, g : Y → X are equal if and only if the
composite

Y
〈f,g〉−−−→ X ×X eqX−−→ Ω

is equal to >Y .
We would also like to be able to define the power set of any set X, but this can simply

be defined as ΩX .
Next, we have not yet said anything about the all-important quantifiers. Demanding the

existence of universal and existential quantification amounts to requiring that the order-
preserving functions p∗ : C(X,Ω) → C(X × Y,Ω) induced from product projections p :

8The definition corresponds to the “second-order” definition of negation: ¬P := ∀Q ∈ Ω, (P ⇔ Q).
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X × Y → X always have right and left adjoints. It can be shown that this follows from our
axioms.

Finally, we have already demanded that C have finite limits (that is, a terminal object
and pullbacks). It is also natural to ask that it have finite colimits. This means (i) C has
an initial object; this is the “empty set”, (ii) C has coproducts; this is the “disjoint union”,
and (iii), C has coequalizers; for morphisms f, g : X → Y , the co-equalizer represents the
quotient of Y by the equivalence relation generated by the image of 〈f, g〉 : X → Y × Y .
Again, it can be shown that the existence of all of these follow from our axioms.

5.5. Math. In order to get started with defining interesting mathematical objects in a
topos, we need a starting point: the natural numbers. There is a simple categorical notion
of a natural numbers object, which we will not give here, since we will not need it. Once
we have the natural numbers – since we also have products, power sets, and quotients by
equivalence relations – we can go on to define the integers, the rationals and the reals in
the usual fashion, and then begin to make the basic definitions and formulate and prove the
basic theorems from analysis, and so on.

It should be noted that there is a significant difference as to how much of the classical
mathematical facts we can prove depending on whether we assume Axiom 6.

6. Logical categories

We would now like to return to the considerations of Section 3.2, in which we defined the
Boolean algebras B̄n, and we promised that we would be able to use categories to somehow
fit these into a nice structure.

For any object X of our category C, consider the sequence of objects X0 ∼= 1C, X1 ∼= X,
X2, X3, etc., and the associated sequence of Boolean algebras C(1C,Ω), C(X,Ω), C(X2,Ω),
etc. These Boolean algebras are connected to each other by the substitution homomorphisms
f∗ coming from the morphisms f : Xm → Xn, as well as the universal and existential
quantification maps C(Xn,Ω)→ C(Xn−1,Ω).

Because Ω is a subobject classifier, we can take each Boolean algebra C(Xn,Ω) (or
rather, an equivalent Boolean prealgebra) to be a certain subcategory of C – namely, the
subcategory whose objects are the domains of monomorphisms iA : A → Xn, and whose
morphisms are all monomorphisms between these.

Let us collect all of these together by taking the full subcategory of C on all the Xn and
all the domains of monomorphisms iA : A → Xn. This category has many (but not all) of
the nice properties of a Boolean topos. In particular:

(1) It has finite limits
(2) The set Sub(X) of subobjects of each object X form a Boolean algebra
(3) For each f : X → Y , the induced morphism f∗ : Sub(Y ) → Sub(X) (which takes

each subobject of Y to its pullback along f) is a Boolean algebra homomorphism
(4) Each such f∗ has left and right adjoints ∃f and ∀f
(5) It fulfills a certain technical compatibility condition between the quantifiers ∃f ,∀f

and the pullback homomorphisms g∗ called the “Beck-Chevalley condition”, which
we will not spell out

A category satisfying these conditions is called a Boolean category.
Now, suppose our category C is Set, the category of (ambient) Sets. This is indeed a

Boolean topos, in which the subobject classifier is just the two-element set9, and let the set

9Under our designation of Ω as the set of (logical equivalence classes of) propositions, this corresponds

to the strange-seeming assumption that there are only two propositions up to equivalence. This corresponds
to the simplifying and very traditional assumption that the equivalence of two propositions simply amounts
to their both being either true or false.
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X be the underlying set of a semi-ring R. Then the Boolean algebras C(Xn,Ω) is just the
power set P(Rn) of Rn, familiar from Section 3.2.

Hence, if we collect all the Boolean algebras B̄n from Section 3.2 into a category B̄
(by simply taking their disjoint union), we find that the various morphisms B̄n → P(Rn)
defined there get collected into a functor B̄ → Set. We now wish to “thicken” B̄ into a
logical category. One can prove

Theorem. There exists a Boolean category Csemiring and an embedding B̄ ↪→ Csemiring
such that each functor B̄ → Set arising from the choice of a semi-ring R as above fac-
tors through a logical functor (i.e., one preserving all the structure of a logical category)
Csemiring → Set:

B̄ r�

$$

// Set

Csemiring

::

Moreover, every logical functor Csemiring → Set arises in this way.

As we did with the B̄n, we can think of the objects of Csemiring to be the “first-order
definable” subsets of (cartesian powers of) a generic semi-ring R, and each logical functor
Csemiring → Set as realizing these as subsets of (cartesian powers of) an actual semi-ring.

It is easy to see that if two semi-rings are isomorphic, then the corresponding functors
Csemiring → Set will be natural isomorphic, and vice versa. Hence the above theorem
sets up an equivalence between the category of logical functors Csemiring → Set and the
category of semi-rings.

Of course, there is nothing special about semi-rings. The same discussion could be
repeated with a wide variety of other algebraic structures.

7. Final remarks

As we said, there are interesting examples of non-Boolean topoi. In particular, the very
first examples of topoi (besides Set) – namely, categories of sheaves on topological spaces
– which arose in algebraic geometry from considerations far removed from those discussed
here, are very rarely Boolean.

But the non-Boolean topoi are of logical interest too. In fact, the “Heyting” from “Heyt-
ing algebra” was a student of L.E.J. Brouwer, the father of intuitionism, a radical mathe-
matician who rejected traditional mathematical reasoning and tried to reestablish mathe-
matics on the basis of his new, constructive approach. The concept of Heyting algebra was
Heyting’s attempt to extract the logical essence of (a part of) Brouwer’s ideas and formalize
them in an algebraic structure.

The concept of intuitionism has received varied interest from mathematicians since then;
it is central in the sub-field of mathematical logic known as proof theory, and in the related
area of theoretical computer science called type theory. In particular, it plays a central role in
homotopy type theory, a quite recent development revealing connections between homotopy
theory and logic.

Certainly, one event which stimulated or revived interest in intuitionistic logic was the
discovery of topoi as a natural setting for it; in particular, topoi give us a clear picture of
what intuitionistic set theory is, which is otherwise somewhat hard to grasp.

As far as their capacity to formalize mathematics is concerned, topoi have certain limita-
tions compared to the traditional formalization of set theory; there are things which can be
expressed in the traditional set theory which have no analogues in a topos. This deficiency
indicates that we should try to go beyond topoi and find some new, even better, structures.
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Topoi represent the beginning of a project of “categorical foundations”, but hopefully not
the end!
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