Problem 1. Write down a first-order system of differential equations which is equivalent to the equation

$$y^{(3)} = (\ddot{y})^2 - y\dot{y} - t.$$

Problem 2.

(a) Find the (real) eigenvectors and eigenvalues of the matrix

$$A = \begin{bmatrix} 3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix}$$

- (b) Find a diagonal matrix D and an invertible matrix U such that $A = UDU^{-1}$. Compute the inverse U^{-1} .
- (c) Compute the exponential e^{tA} using the results from (b).
- (d) Find the general solution $y : \mathbb{R} \to \mathbb{R}^3$ of the differential equation $\dot{\mathbf{x}} = A\mathbf{x}$.

Problem 3.

(a) Find the (real) eigenvectors and eigenvalues of the matrix

$$A = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix}$$

- (b) Compute the exponential e^{tA} by finding functions $b_0(t)$, $b_1(t)$, and $b_1(t)$ such that $e^{tA} = b_0(t)I + b_1(t)A + b_2(t)A^2$. Hint: Recall that Theorem 13.2.4 gives conditions which determine b_0 , b_1 , and b_2 .
- (c) Find the general solution $y: \mathbb{R} \to \mathbb{R}^3$ of the differential equation $\dot{\mathbf{x}} = A\mathbf{x}$.

Problem 4. Find the (complex) eigenvalues and eigenvectors of the rotation matrix

$$R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.$$

Problem 5. Let $L \in \mathcal{L}(V)$ be a linear operator on a vector space V. And let L^n be the operator obtained by composing L with itself n times (i.e., $L^0 = \mathrm{id}_V$ and $L^{n+1} = L \circ L^n$ for $n \ge 0$).

Prove that if λ is an eigenvalue of L, then λ^n is an eigenvalue of L^n for all $n \geq 0$.

Problem 6. One can show that if two matrices A and B commute, then $e^{A+B} = e^A \cdot e^B$. (You do not need to show this.)

Find 2×2 matrices A and B for which e^{A+B} and $e^A \cdot e^B$ are not equal.

Problem 7. Let V be a real inner product space and let $L \in \mathcal{L}(V)$ be an orthogonal transformation. (Recall that this means that $\langle L\mathbf{v}, L\mathbf{w} \rangle = \langle \mathbf{v}, \mathbf{w} \rangle$ for all $\mathbf{v}, \mathbf{w} \in V$.)

Prove that any eigenvalue of V is equal to ± 1 .

Problem 8. Find the general solution $\mathbf{x} \colon \mathbb{R} \to \mathbb{R}^2$ to the inhomogeneous system

$$\dot{\mathbf{x}} = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \mathbf{x} + \begin{bmatrix} e^t - 1 \\ e^t \end{bmatrix}.$$