MAT 308 Practice Midterm Spring 2025

Problem 1. Let V be a real vector space, and let $\mathcal{L}(V)$ be the vector space of linear maps $f: V \to V$, in which addition and scalar multiplication are defined by (f + g)(v) = f(v) + g(v) and $(r \cdot f)(v) = r \cdot (f(v))$ for $f, g \in \mathcal{L}(V), r \in \mathbb{R}$, and $v \in V$. Let $m: \mathcal{L}(V) \times \mathcal{L}(V) \to \mathcal{L}(V)$ be the map given by composition, so that $m(g, f) = g \circ f$ for $f, g \in \mathcal{L}(V)$. Prove that m is bilinear. **Problem 2.** Find a solution $y \colon \mathbb{R} \to \mathbb{R}$ to the boundary value problem

$$y'' - 4y' + 4y = 0; y(0) = 0; y(1) = e^2.$$

Problem 3. Find all solutions $y \colon \mathbb{R} \to \mathbb{R}$ to the initial value problem

$$y' + 2xy = 2x^3; y(1) = 0.$$

Problem 4. Find all solutions $y \colon \mathbb{R} \to \mathbb{R}$ to the differential equation

 $y'' = e^x \sin x$

Problem 5. Are the following statements true or false? Put a "T" or "F" in the box next to each statement. No justification is necessary.

For any linear map $f: V \to V$ from a vector space to itself, there is some $\mathbf{v} \in V$ with $f(\mathbf{v}) = \mathbf{v}$.

For any function $f \colon \mathbb{R} \to \mathbb{R}$, there exists a differentiable function $F \colon R \to \mathbb{R}$ with F' = f.

Every finite-dimensional real vector space is isomorphic to \mathbb{R}^n for some $n \in \mathbb{N}$.

The differentiation operator $D: \mathcal{C}^{\infty}(\mathbb{R}) \to \mathcal{C}^{\infty}(\mathbb{R})$ on the vector space $\mathcal{C}^{\infty}(\mathbb{R})$ of smooth functions on \mathbb{R} is injective.

If $F(x_0, y_0) > 0$ for all $x_0, y_0 \in \mathbb{R}$, then any solution $y \colon \mathbb{R} \to \mathbb{R}$ to the differential equation y'(x) = F(x, y(x)) is injective.

If a differential equation y''(x) = F(x, y(x), y'(x)) (where $F \colon \mathbb{R}^2 \to \mathbb{R}$) has a solution $y \colon I \to \mathbb{R}$ on some interval $I \subset \mathbb{R}$, then it then it necessarily has a solution $y \colon \mathbb{R} \to \mathbb{R}$ on all of \mathbb{R} .

Every boundary-value problem of the form y' = C; $y(x_0) = y_0$; $y(x_1) = y_1$ where $C, x_0, x_1, y_0, y_1 \in \mathbb{R}$ and $x_0 \neq x_1$ has at least one solution $y : \mathbb{R} \to \mathbb{R}$.

If $f, g: \mathbb{R} \to \mathbb{R}$ are functions such that f' = g' and f(0) = g(0), then f = g.

Any bilinear map $\beta: V \times V \to \mathbb{R}$ from a real vector space V satisfies $\beta(\mathbf{u}, \mathbf{v}) = \beta(\mathbf{v}, \mathbf{u})$ for all $\mathbf{u}, \mathbf{v} \in V$.

Every differentiable function is continuous.

Problem 6. Find a solution $y \colon I \to \mathbb{R}$ to the initial value problem

$$y' = y^2 + 1; \ y(0) = 0$$

for some interval $I \subset \mathbb{R}$ containing 0.