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1 13.3A: Solution formula

• We can handle non-homogeneous linear systems of ODEs just in the same way we handled a single
non-homogeneous linear equation, using exponential multipliers.

• First, let us recall the general linear-algebra fact that given any particular solution xp to the equation

ẋ(t) = Ax(t) + b(t),

the general solution will be
x = xp + xh,

where xh is a general homogeneous solution, i.e., a general solution to

ẋ(t) = Ax(t).

• Thus, since we already know how to solve the homogeneous equation, finding the general solution
to the inhomogeneous equation amounts to finding any one particular solution.

1.1 Theorem 3.2

• For any t0 ∈ R, a particular solution xp to

ẋ(t) = Ax(t) + b(t)

is given by

xp(t) = etA
∫ t

t0

e−τAb(τ) dτ

• Remarks:

– From the just-mentioned general principle about inhomogeneous equations, it follows that the
general solution is

x = xp + xh = etA
∫ t

t0

e−τAb(τ) dτ + etAc

with c ∈ Kn.

– Note that if we change t0, this will simply have the effect of modifying the constant c.
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– More generally, if we replace
∫ t
t0
e−τAb(τ) dτ with any antiderivative of e−tAb(t), we will obtain

a general solution.

∗ Unlike in the single-variable case, the general antiderivative of a vector-valued function y(t)
is not

∫ t
t0
y(τ) dτ but rather

(∫ t
t1
y1(τ) dτ, . . . ,

∫ t
tn
yn(τ) dτ

)
, i.e., we can choose a different

constant of integration on each component.
∗ Hence, concretely, instead of

∫ t
t0
e−τAb(τ) dτ , we can just choose an antiderivative of each

component of e−tAb(t).
∗ Note that in the book, they denote this by

∫
e−tAb(t) dt, but beware that, as we just said,

this does not correspond to a single definite integral, but rather a separate definite integral
on each component.

∗ Finally, note that if we take a general anti-derivative
∫
e−tAb(t) dt in this sense, the result

etA
∫
e−tAb(t) dt is actually the general solution, since the varying choices of the constant

c in the homogeneous term simply correspond to different choices of anti-derivatives.

• Proof:

– As mentioned, the proof is just an application of exponential multipliers.

– We multiply both sides of the equation x = Ax+ b by the invertible matrix etA to obtain the
equivalent equation

e−tAx− e−tAAx = etAb,

which we can also write as
d

dt

(
e−tAx

)
= e−tAb.

– Applying the fundamental theorem of calculus coordinate-wise, we find a particular solution
to this equation by integrating from any t0:

e−tAxp(t) =

∫ t

t0

e−τAb(τ) dτ.

– We then solve for xp:

xp = etA
∫ t

t0

e−τAb(τ) dτ.

– As mentioned above, in the penultimate step, we could have instead chosen an arbitrary
antiderivative “

∫
e−tAb(t) dt”, and would then arrive instead at the general solution x(t) =

etA
∫
e−tAb(t) dt.

1.2 Example 13.3.1

• Let’s solve

ẋ = Ax+ b =

[
1 1
0 1

]
x+

[
et

e−t

]
.

• We have already considered the corresponding homogeneous equation: since A is in Jordan normal
form, we have

eAt =

[
et tet

0 et

]
.

and hence the general homogeneous solution is

xh = eAtc =

[
c1e

t + c2te
t

c2e
t

]
.
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• We now compute a particular inhomogeneous solution.

– We have

xp = etA
∫

e−tAb(t) dt

= etA
∫ [

e−t −te−t

0 e−t

] [
et

e−t

]
dt

= etA
∫ [

1− te−2t

e−2t

]
dt

= etA
[
t+ 1

2 te
−2t + 1

4e
−2t

−1
2e

−2t

]
=

[
tet + 1

4e
−t

−1
2e

−t

]
• Hence, the general solution is

x = xp + xh =

[
tet + 1

4e
−t + c1e

t + c2te
t

−1
2e

−t + c2e
t

]
.
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