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1 Jan 27, Intro and calculus review

1.1 Introductory remarks

• Differential equations are the central formalism in all of the most important physical theories, and
are of great importance in many other branches of science and engineering, as well as in pure
mathematics.

– For example: “Newton’s Second Law”, “Maxwell’s Equations” from electromagnetism, “Ein-
stein’s Field Equations” from general relativity, “Schrödinger’s equation” from quantum me-
chanics, are all systems of differential equations.

• Roughly speaking a differential equation is an equation containing (ordinary or partial) derivatives.

• Example: Newton’s Second Law F = ma is really F = md2u
dt2

, where u(t) is the position of a given
object with mass m.

– F typically depends on u and maybe on du
dt .

– For example, for a massive body in a central gravitation field, we have F = −G u
|u|3 for some

constant G, so the equation becomes −G u
|u|3 = md2u

dt2
.

– The “unknown” in this equation, for which one might try to solve, is u. It appears twice, with
different amounts of derivatives. A solution would not be a number as in an ordinary equation
but a function of time: the trajectory of the body in question.

• In Newton’s equation, the variable u is actually a vector -valued – i.e., R3-valued – function.

– Thus, the equation is actually a system of three equations.

– As you learned in linear algebra, a system of linear equations is most fruitfully understood as
a single matrix equation Av = b.

– The same kind of thing is true in the theory of differential equations, and moreover there are
some interesting and important further ideas in linear algebra which come in.

– This is why linear algebra is also part of this course.

• Newton’s equation only contains ordinary derivatives and is thus a so-called Ordinary Differential
Equation (or ODE).

– By contrast, all of the other equations mentioned above are Partial Differential Equations
(or *PDE*s).

– We will be dealing almost exclusively with ODEs in this class.

– Just to give you an idea, a simple example of a PDE is the heat equation, which looks like this:
∂u
∂t (t, x) = −∂2u

∂x2 (t, x).

1.2 Calculus review

On engineers and mathematicians

• There are two ways of approaching the subject of differential equations.

– The “mathematician’s way” gives precise definitions of all the objects under consideration, and
rigorous proofs on the basis of those definitions.
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– The “engineer’s (or physicist’s) way” rests on a basic intuitive understanding of all of the basic
objects (real numbers, continuous functions, limits, etc.) and their properties, and this intuition
is based on the physical objects and phenomena that these mathematical objects represent.

– Feynman (“The character of physical law”): There are two kinds of ways of looking at mathe-
matics, which [. . . ] I [. . . ] call the Babylonian tradition and the Greek tradition. In Babylonian
schools in mathematics the student would learn something by doing a large number of examples
until he caught on to the general rule. [. . . ] Also he would know a large amount of geometry, a
lot of the properties of circles, the theorem of Pythagoras, formulae for the areas of cubes and
triangles; in addition, some degree of argument was available to go from one thing to another.
[. . . ] But Euclid discovered that there was a way in which all of the theorems of geometry could
be ordered from a set of axioms that were particularly simple. The Babylonian attitude – or
what I call Babylonian mathematics – is that you know all of the various theorems and many
of the connections in between, but you have never fully realized that it could all come up from
a bunch of axioms.

• Both of these ways are valuable and important.

– And in fact, the “ideal mathematician” or “ideal engineer” don’t exist; everyone is somewhere
in between the two.

– As this is a mathematics course (MAT 308), we must to some extent emphasize the “math-
ematician’s way”: in principle, you should know the precise definitions of all the objects we
consider, be able to give precise statements of all the theorems we consider, and be able to
follow the proofs, and reproduce the simpler ones. (In principle, this also means being familiar
with the axioms of set theory – which, though a good thing, we will not insist on.)

– Thus, we begin with a quick review of the basic elements of set theory and calculus which we
will be using, to make sure we are all on the same page.

Sets

• We take for granted all the notions of set theory, and the basic properties of and operations with
sets, which you know well by now.

• The most important sets are N = Z≥0,Z,Q,R,C for the naturals, integers, rationals, reals, and
complex numbers, to all of which we shall return shortly.

– We write N+ or Z>0 or something like that for the set of positive integers.

• The product of two sets is the set of all ordered pairs X × Y = {(x, y) | x ∈ X, y ∈ Y }.

• We write A ⊂ B or A ⊆ B for “A is a subset of B”.

– If we want to express that A is a proper subset of B, we write A ⊊ B

• A relation R between sets X and Y is a subset of the product R ⊂ X × Y .

– We write “xRy” for (x, y) ∈ R.

• A function (or mapping or map) f : X → Y is a relation f ⊂ X × Y such that for every x ∈ X,
there is a unique y ∈ Y with xfy., i.e.

∀x ∈ X,∃!y ∈ Y, xfy.

– We write f(x) for the unique y ∈ Y such that xfy.
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• A(n infinite) sequence in a set X is a function N → X (or Z≥n → X for any n ∈ Z).

– As usual, we write (xi)
∞
i=0 for the sequence N → X with i 7→ xi for i ∈ N.

• A finite sequence of length n ∈ N or n-tuple in a set X is a function {1, . . . , n} → X.

– We write Xn for the set of finite sequences of length n.
– As usual, we write v = (v1, . . . , vn) for the tuple {1, . . . , n} → X given by i 7→ vi.
– More generally, given sets X1, . . . , Xn, we write X1 × · · · × Xn for the set of finite sequences

(x1, . . . , xn) with xi ∈ Xi for each i.

• We write X ∼= Y if there exists a bijection between X and Y , and we write f : X ∼−→ Y to indicate
that f is a bijection.

• We write Y X for the set of functions X → Y and P(X) for the power set of X, i.e., the set of subsets
of X.

– We have 2X ∼= P(X) for any set X, where 2 is the set {0, 1}.

The real numbers

• We recall the main properties of the set of real numbers R with its operations +: R × R → R and
· : R× R → R and its ordering “ ≤ ” ⊂ R× R:

• Field axioms

– addition and multiplication are commutative and associative, and multiplication distributes
over addition

– 0 and 1 are identity elements for addition and multiplication, respectively (i.e., 0 + a = a and
1 · a = a for all a ∈ R).

– (Exercise: 0 and 1 are each uniquely determined by this property!)
– Every element a ∈ R has an additive inverse (−a) (i.e., a+ (−a) = 0).
– Every element a ∈ R− {0} has a multiplicative inverse a−1.

• Ordering axioms

– ≤ is reflexive, meaning a ≤ a for all a ∈ R.
– ≤ is antisymmetric, meaning a ≤ b ∧ b ≤ a⇒ a = b for all a, b ∈ R.
– ≤ is transitive, meaning a ≤ b ∧ b ≤ c⇒ a = c for all a, b, c ∈ R.
– ≤ is total, meaning a ≤ b ∨ b ≤ a for all a, b ∈ R.
– If a ≤ b then a+ c ≤ b+ c for any a, b, c ∈ K.
– If a ≤ b and c ≥ 0, then a · c ≤ b · c for any a, b, c ∈ K.

• Completeness axiom

– Given a set S ⊂ R, we say that a ∈ R is an upper bound for S if s ≤ a for all s ∈ R, and we
say that S is bounded-above if it has some upper bound.

– Completeness axiom: each bounded-above subset S ⊂ R has a least upper bound (or supremum)
supS, meaning that supS is an upper bound for S, and that supS ≤ a for every upper bound
a for S.

• In short, one says that (R,+, ·,≤) is a complete ordered field.
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• On the basis of these axioms, one can prove all the familiar properties of the algebraic operations
and the ordering relation (an activity you have hopefully done before, and should try your hand at
if you haven’t).

– In fact, these axioms completely determine the real numbers in the following sense: given
any system (K, +̃, ·̃, ≤̃) consisting of a set K, binary operations +̃ and ·̃ on K, and a binary
relation ≤̃ on K satisfying the above axioms, there exists a unique bijection F : R → K
satisfying F (a + b) = F (a)+̃F (b), F (a · b) = F (a)̃·F (b), and a ≤ b ⇐⇒ F (a)≤̃F (b) for all
a, b ∈ K.

∗ (Such a bijection F is called an “isomorphism of ordered fields”.)
∗ (The aforementioned theorem establishes the uniqueness (up to isomorphism) of the real

numbers. One may still reasonably inquire about their existence: why must there exist
such a set satisfying these axioms at all? We simply take it for granted that it exists; if
one wants to construct it, this must be on the basis of some more basic axioms: either the
Peano axioms of arithmetic, or else the axioms of set theory.)

• The other number systems

– We define the sets N,Z,Q ⊂ R as follows.

– N ⊂ R is the smallest subset such that 0 ∈ N and such that n+ 1 ∈ N whenever n ∈ N.

∗ Concretely, this means that N is the intersection
⋂

S⊂R S of all subsets of R satisfying these
two properties.

∗ It follows immediately from this that N satisfies the all-important principle of mathe-
matical induction: given any S ⊂ N such that 0 ∈ S and n+ 1 ∈ S whenever n ∈ S, we
have S = N.

– Z = {a− b | a, b ∈ N} ⊂ R.

– Q = {a/b | a, b ∈ Z ∧ b ̸= 0} ⊂ R.

– Finally, C is simply defined to be R2.

∗ Given (a1, b1), (a2, b2) ∈ C, we set (a1, b1) + (a2, b2) ..= (a1 + b1, a2 + b2), and (a1, b1) ·
(a2, b2) ..= (a1a2 − b1b2, a1b2 + a2b1).

∗ One may check that this makes C into a field (though of course, not an ordered field, since
there is no natural ordering of points in the plane).

∗ Given a ∈ R, we write a as a shorthand for (a, 0) ∈ C.
∗ We also write i as a shorthand for (0, 1) ∈ C; we have i2 = −1.
∗ Thus, we may write (a, b) = a+ bi for every (a, b) ∈ C, and we then have (a1+ b1i)+ (a2+
b2i) = (a1 + b1) + (a2 + b2)i and (a1 + b1i) · (a2 + b2i) = a1a2 + b1b2i

2 + a1b2i+ a2b1i.
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2 Jan 29, More calculus review and 10.1: Direction fields

2.1 Calculus review continued

Calculus

• We will be reviewing various topics from calculus (and linear algebra) as they come up; we will just
recall a couple of the most important ones here

• We consider functions f : I → R defined on some domain I ⊂ R.

– Typically, I ⊂ R will be an interval: a set of the form (a, b), [a, b), (a, b], or [a, b], where
a ∈ R ∪ {−∞} and b ∈ R ∪ {∞} and a ≤ b.

• Limits:

– Given a function f : I → R and x ∈ I, we have the limit limx→a f(x) and the one-sided limits
limx↗a f(x) and limx↘a f(x) (each of which may or may not exist).

– Ideally, you should know the definition of the limit: limx→a f(x) = b means ∀ϵ > 0,∃δ >
0,∀x ∈ I, (0 < |x− a| < δ ⇒ |f(x)− b| < ε).

– But the most important thing is that you know the basic rules for limits: limx→a f(x)+g(x) =
limx→a f(x) + limx→a g(x) (assuming the right-hand sides exists), and so on.

• A function f : I → R is continuous at a ∈ I if limx→a f(x) = f(a), and is continuous on I if it is
continuous at each a ∈ I.

– Continuous functions satisfy the intermediate value theorem.

• Derivatives:

– f : I → R is differentiable at a ∈ I if limh→0
f(a+h)−f(a)

h exists, and if so, this limit is called
f ′(a).

– f is differentiable on I if it is differentiable at each a ∈ I; in this case, we have the derivative
f ′ : I → R.

∗ Theorem: Differentiability implies continuity.
– We sometimes write y = f(x) and then denote the derivative by f ′(x) = dy

dx .
∗ Here, we are thinking of x and y as “variables”, with y varying “dependently” on x; then
dx represents an “infinitesimal variation” of x, dy represents the resulting infinitesimal
variation of y, and the derivative is their quotient.

∗ This is the classical way of thinking about functions, which has been preserved by the
physicists and engineers, but among mathematicians has been replaced by the set-theoretic
perspective.

∗ With some care, this notation can be used in a consistent and rigorous way (in fact, doing
so leads to some very interesting mathematics), but in general, it is best to follow the
physicists and engineers, and freely use our intuition about infinitesimals without worrying
about the formal definition; and then if we want a rigorous proof, we can always revert to
the formal, set-theoretic definitions.

∗ In any case, we often simply write df
dx for f ′.

– We write f ′′ or d2f
dx2 for the derivative of f ′ (if it exists), and f ′′′ and f (4) and f (5) and so on.

– Again the most important thing is to know all the rules for derivatives: the sum rule, product
rule, quotient rule, chain rule, the rule for xn, and the derivatives of everyone’s favourite
functions: sin, cos, ex, lnx, and so on.

8



– We denote by Ck(I) the set of functions f : I → R such that the derivatives f ′, f ′′, . . . , f (k)

exist and are continuous; C0(I) is simply the set of continuous functions on I, and C∞(I) is the
set of infinitely differentiable (or smooth) functions on I. All of the most common functions
are smooth.

• Partial derivatives

– We consider functions f : U → R defined on a domain U ⊂ Rn.

– Often, U will be all of Rn, or maybe some product of intervals U = I1 × · · · × In.

– The definition of limit and continuity for such functions is exactly the same as in the single-
variable case,

∗ except that now, the absolute values |x− a| and so on appearing in the definition are now
considered norms.

∗ We recall the norm of v ∈ Rn is given as in the Pythagorean theorem: |v| =
(∑n

i=1 v
2
i

)1/2.
– Given f : U → R and a ∈ U , the i-th partial derivative of f at a, if it exists, is the “derivative

of f at a in the i-th coordinate direction, holding all other coordinates constant”.

– For example, if n = 2, the two partial derivatives at (a, b) ∈ U are

lim
h→0

f(a+ h, b)− f(a, b)

h
and lim

h→0

f(a, b+ h)− f(a, b)

h
.

– In general, the i-th partial derivative at a ∈ U is

lim
h→0

f(a1, . . . , ai−1, ai + h, ai+1, . . . , an)− f(a1, . . . , an)

h
.

– There are many notations for the i-th partial derivative; the simplest are ∂if or fi; often we
write y = f(x1, . . . , xn), and then write ∂y

∂xi
or ∂f

∂xi
or ∂xif or fxi .

– In practice, one evaluates the partial derivative with respect to xi by “pretending all the other
variables are constant and taking the ordinary derivative with respect to xi”.

• The chain rule

– The sum, product, quotient rules for partial derivatives are just like those for ordinary deriva-
tives.

– The chain rule is more interesting: if yi = fi(x1, . . . , xm) for i = 1, . . . , n and z = g(y1, . . . , yn),
so that

z = g
(
f1(x1, . . . , xm), . . . , fn(x1, . . . , xm)

)
,

then
∂z

∂xi
=

n∑
j=1

∂z

∂yj
· ∂yj
∂xi

.

– The chain rule is most elegantly expressed using the Jacobian (or total derivative) matrix.
For this, we must recall a bit about vector-valued functions and matrix multiplication, and we
will do this when it comes up.

• Sequences and series

– The limit limn→∞ xn of a sequence (xn)
∞
n=0, if it exists, is defined as the unique a ∈ R such

that ∀ϵ > 0, ∃N ∈ N,∀n ≥ N, |xn − a| < ε.

∗ We also write xn
n→∞−−−→ a.
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– Again, the most important thing is that you know the main rules for limits: the sum rule
limn→∞ an+ bn = limn→∞ an+limn→∞ bn (assuming the right-hand side exists), the difference
and quotient rules, and the rule that if f is a function which is continuous at a and xn

n→∞−−−→ a,
then f(xn)

n→∞−−−→ f(a).

– The sum of the infinite series
∑∞

n=0 an, if it exists, is the limit limN→∞ Sn of the partial sums
SN =

∑N
n=0 an.

– You should know the various tests for convergence: the comparison test, alternating series
test, absolute convergence test, ratio test, root test, integral test.

• Integration

– If I ⊂ R contains the interval [a, b] and f : I → R is any function, we can talk about the integral∫ b
a f(x) dx, which may or may not exist, but always does exist when f is continuous, or even

continuous outside of finitely many points.

– Again, it is best – though perhaps not essential – to know the definition of the integral, in
terms of Riemann sums: at least for continuous functions, the integral

∫ b
a f(x) dx is given by

the limit limN→∞
b−a
N

∑N
i=1 f(a+ i b−a

N ).

∗ (In general (for not necessarily continuous f), the definition is a bit more complicated:
one has to consider arbitrary partitions a = x0 ≤ · · · ≤ xN = b, and not just the “regular
partition” xi = a+ i b−a

N .)

∗ The notation
∫ b
a f(x) dx is meant to represent an “infinite sum of infinitesimals” (the inte-

gral sign is an “S” for “sum”). This is the classical notion, which again has been superseded
by the modern set-theoretic definition. Again, it can be made rigorous with some effort,
and again, we do well to follow the physicists and engineers in freely using this intuition
when it is useful.

– Again, the most important thing to know are the various rules, among which the most impor-
tant is the fundamental theorem of calculus:

∗ The integral
∫ b
a f(x) dx is equal to F (b)− F (a) where F : [a, b] → R is any anti-derivative

of f , meaning a function with F ′ = f (assuming that an anti-derivative exists!).
∗ Moreover, if f is continuous, then an anti-derivative does exist.
∗ When anti-derivative F of f exists is uniquely determined up to a constant C ∈ R, and

the “indefinite integral” is defined as
∫
f(x) dx = F (x) + C.

– Other rules you should know include: the sum and difference rule, the substitution rule, and
integration by parts, as well as the million little tricks you’ve learned to apply these in various
special cases.

– We will review the important topics of multi-variable integrals and improper integrals if and
when they come up.

2.2 10: First-order ODEs

• We now begin our study of differential equations.

– As a preliminary definition, a differential equation of order n is an equation whose unknown is a
function y(x), and which may involve the derivatives of y up to order n, that is y, y′, y′′ . . . , y(n),
as well as x itself.

– Examples of order 1 and 2 are

y′(x) + y(x) = x and y′′(x) + y′(x) = 0.
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which we usually just write as

y′ + y = x and y′′ + y′ = 0.

– A solution to this equation on an interval I ⊂ R is then a function y : I → R which satisfies
this equation for all x ∈ I (in particular, y must be n times differentiable).

∗ In principle, one can consider differential equations on any domain I ⊂ R, and not just
on an interval I. But if I is not connected, say for example, I = I1 ∪ I2, where I1 and I2
are disjoint intervals, then a solution to the differential equation on I just amounts to a
solution on I1 and a separate solution on I2.

– For example, y(x) = x− 1 and y(x) = e−x are solutions to the above two equations.

– (As with ordinary equations, we are often not interested in finding a solution, but in finding
all possible solutions.)

• The above definition will be perfectly satisfactory for our purposes, though it is also good to give a
more precise, formal definition of what we mean by a “differential equation”, which one can do as
follows.

– We define a(n ordinary) differential equation of order n to be an arbitrary function F : Rn+1 →
R (or more generally U → R for some U ⊂ Rn+2).

∗ Intuitively, we think of F as representing the equation y(n) = F (x, y, y′, . . . , y(n−1)).
∗ (One can more generally consider so-called “implicit” equations given by a functionE(x, y, y′, . . . , y(n)),

which we think of as representing the equation 0 = F (x, y, y′, . . . , y(n)), but this is rarely
done.)

– A solution to the differential equation F on I ⊂ R is then a n-times differentiable function
y : I → R such that ((x, y(x), y′(x), . . . , y(n−1)(x)) ∈ U and) y(n)(x) = F (x, y(x), y′(x), . . . , y(n−1)(x)) =
0 for all x ∈ I.

– For example, in this formalism, the above two equations would be given by the functions
F (x, y0) = x− y0 and E(x, y0, y1) = −y1, respectively.

– An example where we have to take some U ⊊ Rn is the equation y′′ = 1/y′ + y, where
F (x, y0, y1) = 1/y1 + y0, and so the largest U we can take is {(x, y0, y1) ∈ R4 | y1 ̸= 0}.

• To begin with, we will be considering only first-order differential equations.

2.3 10.1: Direction fields

• We consider an arbitrary first-order equation

y′ = F (x, y).

– Any solution y(x) passing through (x0, y0) must have slope F (x0, y0) at that point.

– Thus, we think of F (x, y) as assigning a slope to each point (which we can represent as a short
line segment through that point with that slope); this is called a slope field or direction
field.

– This is not to be confused with a vector field.

– We can draw the direction field F (x, y) by sampling several points and drawing line segments,
or we can first find several solutions to the differential equation, and then simply plot various
tangents along the resulting graphs.
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Example 10.1.1

• Consider the equation y′ = −y/x for x ̸= 0.

• We sample the slopes at a few points:

(x, y) y′ = −y/x
(1,1) -1
(1,2) -2
(2,1) -1/2
(-1,2) 2
(-2,2) 1

• We obtain a picture as in Figure 10.2 (a)

• Let’s solve the equation!

– Let I ⊂ R be one of (−∞, 0) or (0,∞).

– Suppose that y : I → R is a solution to y′ = −y/x.
– Rearrange: xy′ + y = 0 (equivalent by the assumption x ̸= 0).

– Product rule: (xy)′ = 0.

– Thus x · y(x) is some constant c.

– So y = c/x.

• Thus, every solution is of the form y = c/x.

– Conversely, since each step above was a logical equivalence, it follows that y = c/x is always
a solution (as one can also check directly).

– We may say that the general solution to the equation is y = c/x with x ∈ R.

• We can plot the solutions and see they are tangent to our slope field.
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3 Feb 3, 10.2: Separation of variables

3.1 10.1: Direction fields

Example 10.1.2

• If F (x, y) is independent of y, the equation takes the form

y′ = G(x);

assume G is continuous.

• Then the solutions are simply the antiderivatives of G: y =
∫
G(x) dx+ C.

– All of the solution curves will be parallel to each other, as one can also see from the direction
field.

• Example: y′ = cosx.

– Then the general solution is y = sinx+ c.

– Note: when discussing the solutions to a differential equation, one should always first state on
which interval I one is seeking solutions y : I → R, though this is often left implicit.

– So here, we should say we are seeking solutions y defined on all of R, and then the general such
solution is y = sinx+ c.

Example 10.1.3

• We see that differential equations tend to have many solutions.

• We can add extra conditions to a differential equation to single out a particular solution.

• If we demand that y passes through a given point (x0, y0), i.e., that y(x0) = y0, this is called an
initial condition. (More generally, we can demand that y(i)(xi) = yi.)

• The problem of satisfying a differential equation with a given initial condition is called an initial
value problem (IVP).

• The name comes from thinking of x as the “time parameter” and x0 as the “initial time”.

• We return to y′ = −y/x, x ̸= 0 with solutions y = c/x.

– Now consider the initial value problem (x0, y0) = (1/2, 2).

– We thus have 2 = c/(1/2) and hence c = 1.

– The (unique!) solution to the IVP is thus y = 1/x, x > 0.

• We can also solve the general IVP for a given (x0, y0).

– We have y0 = c/x0, so c = x0y0, and the solution is y = x0y0/x, with x ∈ (0,±∞) depending
on the sign of x0.
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3.2 10.2B: Separation of variables

• Among the first-order equations y′ = F (x, y), we have seen that the simplest case is when F (x, y)
doesn’t depend on y. We can then solve it simply by integration.

• We now study the more general case in which in which F (x, y) is of the form f(x) · h(y).

– Supposing h is non-zero and setting g(y) = h−1(x), these are thus the equations of the form
g(y) · y′ = f(x).

– These can often also be solved simply by integration, using a method called “separation of
variables”.

– Writing g(y)dydx = f(x), we obtain “g(y) dy = f(x) dx” and hence∫
g(y) dy =

∫
f(x) dx.

– Computing antiderivatives F and G of f and g, we thus have G(y) = F (x) + C, and can thus
find y as long as we can solve for y in this (non-differential-)equation.

– (We can do the above computation without using “differentials”: we simply have dG(y(x))
dx =

y′(x) · g(y(x)) = f(x) by the chain rule, and hence G(y(x)) is an antiderivative of f(x).)

Example 10.2.3

• We consider the differential equation dP
dt = kP , where k > 0 is a constant.

– This describes the rate of growth of a population of bacteria of size P (t) (say in grams), in
which each bacterium reproduces at a rate of k bacteria per second.

– As always in mathematical modelling, we are making simplifying assumptions in this equation,
so we can only expect the solution of the equation to give an approximation to the population
growth of the bacteria.

• We know from experience that the solution is P (t) = Kekt for some constant K.

– But let us see how we could have arrived at that using separation of variables.

– Assuming P is always positive, we have
∫

1
P dP =

∫
k dt, hence lnP = kt + C, hence P (t) =

ekt+C = eC · ekt.
– The solution to the IVP P ′ = kP ;P (0) = P0 is thus P (t) = P0 · ekt.
– (Assuming instead that P is always negative would given ln(−P ) = kt+ C and hence P (t) =

−eC · ekt and thus again P (t) = P0e
kt; assuming just that P is non-zero would also lead to the

same conclusion, since being differentiable and hence continuous, it is then always positive or
negative.)

– Be careful: in this computation, we had to make the assumption that P is non-zero, so that
we could divide by it. If this assumption wasn’t valid, our solution may be incorrect. However,
we can just check directly that our solution is correct.

• This obviously isn’t a realistic solution for large t; one problem is that our model doesn’t include
the amount of food available to the bacteria.

• If we look carefully at what we did, we see that we almost showed that this is the unique solution to
the IVP; the only problem is we had to assume P was non-zero; the possibility remains that there
are other solutions which are zero somewhere (besides the obvious one P (t) = 0).
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– The trick to show uniqueness without this assumption is to consider the product P (t) · e−kt.

– We then have d
dt(Pe

−kt) = kPe−kt − kPe−kt = 0. Hence e−kt · P (t) is equal to a constant K
and P = Ke−t, as desired.

– We will return to this trick of “exponential multipliers” soon.

– (We also have uniqueness by the general uniqueness theorem we stated, but that is overkill.)

Example 10.2.6

• We consider a tank of a chemical solution, in which a particular chemical is flowing in and out at a
particular rate.

• We let S = S(t) be the amount of chemical at time t. Then

dS

dt
= (rate of inflow)− (rate of outflow).

• Example: a 100-gallon tank contains 150 pounds of salt of salt in solution at time t = 0.

– A salt solution with 2 pounds of salt per gallon is being added at a rate of 2 gallons per minute.

– The solution, which we take to be homogeneous, is flowing out of the tank at a rate of 2 gallons
per minute.

– Thus salt is flowing in at 4 pounds per minute, and out at 2S(t)/100 pounds per minute at
time t.

• Thus S satisfies the IVP dS
dt = 4− 2S

100 ;S(0) = 150.

• We solve it using separation of variables

– We have
∫

dS
S−200 = −

∫
dt
50 ; we see that this will only be valid if S − 200 remains non-zero for

all time. Since S(0)− 200 = −50, we suppose it remains negative for all t.

– Hence ln
(
−(S − 200)

)
= −t/50 + C.

– Hence S = 200− eCe−t/50.

– The initial condition gives 150 = S(0) = 200− eC and hence eC = 50.

– Hence S = 200−50e−t/50; this is plotted in Figure 10.9; it has a positive slope and an asymptote
limt→∞ S = 200.

– Checking directly, we see that this is indeed a solution to the equation.

• (Again, we had to assume S ̸= 200 here, so we haven’t proven that this is the unique solution; again,
we can circumvent this using an exponential multiplier.)

– Note however that the uniqueness is important, from a scientific perspective: to draw the
conclusion that the amount of chemical in the tank evolves in the way that we found, on the
basis of the fact that it solves the given IVP, we have to know that it is the only solution to
the IVP.
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4 Feb 5, 10.3: More separation of variables; existence and uniqueness
theorem

4.1 More of 10.2B: Separation of variables

Example 10.2.4

• Consider y′ = y/x, for x ∈ R− {0}.

– The direction field is shown in Figure 10.7.

• By separation of variables we have y−1 dy = x−1 dx, hence ln|y| = ln|x| + C, hence |y| = eC |x|,
hence y = ±eCx.

– Thus, the solutions are y = kx for k ∈ R.

– (We should really be more careful here and say that we are looking for solutions on (−∞, 0)
or on (0,∞), since otherwise we could also have solutions like

y(x) =

{
x x < 0

2x x > 0.

– (The same is true in general when we say
∫
x−1 dx = ln|x|+C: if we take the function x−1 to

be defined on all of R − {0}, then the anti-derivative is only determined up to two constants:
one on (−∞, 0) and one on (0,∞).)

• To prove uniqueness without needing y to be non-zero, we can use a similar trick to last time: we
have 0 = y′ − y/x and hence 0 = y′/x− y/x2 = d(y/x)

dx . Hence y/x is a constant.

– (This is secretly again a case of the method of “exponential multipliers”.)

4.2 End of 10.1: existence and uniqueness

Example 10.1.4

• In the previous examples, there was a unique solution to each IVP y′ = F (x, y); y(x0) = y0, and
this solution extended over the whole given domain; both of these features can fail.

• Consider

y′ =

{√
y, y ≥ 0

0, y < 0.

– The direction field for this is shown in Figure 10.3 (a).

– It has two solutions y : R → R passing through (x0, y0) = (0, 0): y(x) = 0 and

y(x) =

{
0, x < 0

x2/4, x ≥ 0.

∗ To conclude that y is differentiable and compute y′(0), we use the Theorem from calculus
that if a function f has a “left” derivative limh↗0(f(a+h)−f(a))/h and a “right” derivative
limh↘0(f(a+h)− f(a))/h at a given point a, and they agree, then f is differentiable at a.

– In fact, there are infinitely many solutions to this IVP.

• As we will see, there is a simple condition on F (x, y) which guarantees that this cannot not happen.
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Example 10.1.5

• Now consider y′ = 1 + y2.

– The direction field is shown in Figure 10.3 (b).

– It has the solution y = tanx passing through (x0, y0) = (0, 0).

– This can only be extended to x ∈ (−π/2, π/2) since it tends to ±∞, despite F (x, y) being
well-behaved everywhere.

– In particular, had we stated the problem in the form “find a solution to this IVP which is
defined on all of R”, the conclusion would have been that this problem does not have a solution.

• Again, this can be avoided by putting a simple condition on F .

Existence and uniqueness theorem

• We now state a general theorem which guarantees that a unique solution to a given IVP exists, if
we assume that F satisfies certain conditions which in particular rule out the above pathologies.

– The existence result should be compared to analogous phenomena for polynomial equations.

– For degree 2 polynomial equations, we have an explicit method of solution, and even an explicit
formula; this is analogous to the explicit methods we have introduced and will introduce to
solve certain classes of differential equations.

– On the other hand, we also know the general result (whose proof is easy): every odd degree
polynomial equation has a solution. In this case, we are guaranteed on general grounds that
a given equation has a solution, but we are not given any means to find it. The following
existence theorem is of a similar nature.

• Theorem: Suppose F : U → R is continuous, where U = I1 × I2 for some intervals I1, I2 ⊂ R, and
that Fy : U → R exists and is continuous.

– Then for any (x0, y0) ∈ U , the IVP y′ = F (x, y); y(x0) = y0 has a solution defined on some
interval I ⊂ I1, and this solution is unique in the sense that for any two solutions y1 : I → R
and y2 : I ′ → R, y1(x) = y2(x) for x ∈ I ∩ I ′.

– If moreover I2 = R and there exists B ∈ R with Fy(x, y) < B for all (x, y) ∈ U , then the
solution will exist on the entire interval I1.

• The first condition fails for Example 10.1.4, since y 7→ √
y is not differentiable at y = 0.

– The second condition fails for Example 10.1.5, since 1 + y2 is not bounded as y → ±∞.
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5 Feb 10, Proof of existence and uniqueness; 10.1: Numerical methods;
and 10.3: Linear equations

5.1 End of 10.1: existence and uniqueness

• We will sketch the proof of the existence and uniqueness statement from last time.

• The proof of the second part is fairly easy: the point is that if the slope of y(x) is bounded, then it
can only increase by a finite amount in finite time by the mean value theorem.

– The general fact is that if a function y : I → R satisfies |y′(x)| < B for all x ∈ I, then for any
a < b in I, we have |y(b)− y(a)| < B(b− a).

– Indeed, if we had |y(b)− y(a)|/(b− a) ≥ B, then the mean value theorem would given y′(ξ) =
|y(b)− y(a)|/(b− a) ≥ B for some ξ ∈ (a, b), contradicting the assumption that y′(x) < B for
all x ∈ I.

– One then has to show that the only way that a solution to the IVP can fail to extend over the
entire interval I is if it diverges to ±∞.

• The proof of the first part uses an ingenious trick called Picard iteration.

– One first converts the equation to the equivalent integral equation y(x) = y0+
∫ x
x0
F (x, y(x)) dx;

this integral exists since F is continuous.

– One then finds a sequence of better and better approximations to the solution:

– The first is simply f1(x) = y0.

– Then we inductively define fn+1(x) = y0 +
∫ x
x0
F (x, fn(x)) dx.

– Finally, we define y(x) = limn→∞ fn(x).

– We then have

y(x) = lim
n→∞

fn(x) = lim
n→∞

fn+1(x) = lim
n→∞

y0 +

∫ x

x0

F (x, fn(x)) dx = y0 +

∫ x

x0

F (x, y(x)) dx,

as desired.

– The tricky part is to show that the limit defining y actually converges (and that the ex-
changing of limit and integral in the last equation is legitimate); this is where the assumption
is used that Fy exists and is continuous.

• (This is an instance of the general technique of finding fixed points using iteration: given a domain
U and a continuous function G : U → U , if we want to find a fixed point of G, i.e., a point x ∈ U
with G(x) = x, we can choose some arbitrary x0 ∈ U , and iteratively define xn+1 = G(xn), and set
x = limn→∞ xn if this limit exists. Using the continuity of G, we then have G(x) = G(limn→∞ xn) =
limn→∞G(xn) = limn→∞ xn+1 = x, as desired.)

5.2 10.1B: Numerical Methods

• In scientific applications, it is often important not to explicitly solve a given IVP y′ = F (x, y); y(x0) =
y0 (which often cannot be done anyway), but to compute numerically an approximation to its solu-
tion.

– This amounts to running a simulation of a quantity y whose rate of change at each time x is
given by F (x, y).

– Geometrically, it amounts to tracing out a curve tangent to a given direction field.
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• A straightforward way to do this Euler’s method:

– Fix some step size h > 0.

– We are given x0 and y0.

– Now define xn = x0 + n · h for n > 0, and recursively define yn+1 = yn + F (xn, yn) · h.
– It is easy to implement this in any programming language; an example is given in the book.

• There are many ways to improve this algorithm, and there is a whole field dedicated to studying
such things.

– A central problem that arises is the accumulation of rounding errors, for example if one tries
to make the above step-size parameter h too small.

– One such improved algorithm is discussed in the book.

5.3 10.3: Linear equations

• A first-order equation y′ = F (x, y) is called linear if F is of the form F (x, y) = −g(x)y + f(x).

– The equation can then be written as y′ + g(x)y = f(x); this is called its normalized form.

– The name linear corresponds to the fact that L(y) = y′ + g(x)y is a linear function of y: we
have L(y1 + y2) = L(y1) + L(y2) and L(a · y) = a · L(y) for a ∈ R (we will return to this when
we do some linear algebra review).

– Thus, a linear equation has the form L(y) = f(x) for some linear operator L.

– Just like in linear algebra, we call the equation homogeneous if f(x) = 0 and inhomogeneous
otherwise.

Example 10.3.1

• In the homogeneous case, if we assume y is never 0, we obtain y′

y = −g(x).

• Integrating, this gives ln y = −G(X) + C for some C ∈ R if y > 0 and ln(−y) = −G(x) dx + C if
y < 0, where G is some anti-derivative of g, i.e.,

∫
g(x) dx = G(x) + C.

• Hence y = ±eCeG(x) and so in either case, y = Ke−G(x) = Ke−
∫
g(x) dx for some K ̸= 0.

– As usual, we can now check directly that this is indeed a solution.

– (And we notice that K = 0 also yields a solution.)

19



6 Feb 12, More linear equations, and linear algebra review

6.1 10.3A: Exponential integrating factors

• In order to show that the solution y = Ke−G(x) is the general solution (which we don’t quite know
since we had to assume y ̸= 0), we use a trick we have used before, and divide the original equation
by the known solution y = e−G(x).

– We obtain 0 = eG(x)y′ + eG(X)g(x) = d
dx(e

G(x)y).

– Note that this is equivalent to the original equation, since we have multiplied by both sides by
a non-vanishing quantity.

– Thus, we see that for any solution y to this equation, eG(x)y must be constant, and so y =
Ke−G(x) for some K ∈ R, as desired.

• This is the trick of “exponential integrating factors” and it also allows us to solve linear equations
in the inhomogeneous case.

• For the equation y′+g(x)y = f(x) in normalized form, the exponential integrating factor is M(x) =
e
∫
g(x) dx.

• We multiply the equation by M and obtain

e
∫
g(x) dxy′ + g(x)e

∫
g(x) dx = f(x)e

∫
g(x) dx.

• Using the product rule, the left-hand side is d
dx(ye

∫
g(x) dx), and the equation becomes

d

dx
(ye

∫
g(x) dx) = f(x)e

∫
g(x) dx.

• Now we can just integrate the right-hand side and solve for y.

– Again, the original equation is equivalent to the equation after multiplying by M since M is
nowhere zero.

Example 10.3.2

• Let’s solve y′ = xy + x.

• We rewrite it in normalized form y′ − xy = x.

• Multiply by the integrating factor y′e−x2/2 − xye−x2/2 = xe−x2/2.

• Now integrate ye−x2/2 = −e−x2/2 + C.

• Thus y = −1 + Ce−x2/2.

• Since each step was an equivalence, this is the general solution to the equation (with domain R).

6.2 10.3B: Applications

Example 10.3.5

• Newton’s law of cooling says the surface temperature u(t) of an objects changes at a rate proportional
to the difference to the ambient temperature f(t) (which we are assuming might also vary with time).

– Thus u′ = k(f − u) for some k > 0.
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– k should be positive so that u′ < 0 precisely when f < u.

• It is supposedly quite accurate in certain situations, but as with all empirical laws, it has its limi-
tations.

– Ideally, in addition to testing the law with experiments, one should develop a mechanism (for
example, in terms of the jiggling of molecules) which explain why it should hold; this makes it
easier to understand under which circumstances it should and shouldn’t apply.

• Writing this as u′ + ku = kf(t), this is just a special case of a linear first-order equation in which
the coefficient of u is constant.

• We obtain u′ekt+uekt = kf(x)ekt and hence uekt =
∫
kf(x)ekt dt+C and hence u = ke−kt

∫
f(t)ekt dt+

Ce−kt.

– We fix the lower-bound of the integral to t = 0, giving C = u(0) and hence u = ke−kt
∫ t
0 f(s)e

ks ds+
u(0)e−kt.

• If the ambient temperature is constant, f(t) = f0, we obtain u = kf0(1 − e−kt) + u(0)e−kt =
kf0 + (u(0)− kf0)e

−kt.

– Thus u(t) t→∞−−−→ f0, as we would expect.

6.3 Abstract vector spaces

• We review the concept of an abstract vector space.

• There are both real and complex vector spaces. In order to handle both at the same time, in what
follows, we let K stand for one of R or C.

– (Actually, the notion of vector space makes sense when K is any field.)

• The motivating examples of vector spaces are the familiar ones Kn; the abstract definition results
from isolating the most important features and properties from these. One should keep this example
in mind when considering the general definition, but as we’ll see, there are lots of other interesting
examples as well.

• Definition: a vector space over K or K-vector space is a triple (V,+,×) where V is an arbitrary
set (whose elements we call vectors), +: V × V → V is a binary operation on V (called “addition”)
taking any two elements u,v ∈ V to an element u + v ∈ V , and × : K × V → V is an operation
(called “scalar multiplication”) taking an element r ∈ K and an element v ∈ V to an element
r × v ∈ V (which we also write as r · v or just rv ∈ V ).

– These are required to satisfy the following axioms:

– Addition is associative and commutative, and has an identity element 0 ∈ V (i.e., v + 0 = v
for all v ∈ V ). (Exercise: it follows that there is a unique such element, which we call the
“zero vector ” of V .)

– Each v ∈ V has an additive inverse (−v) (i.e., v + (−v) = 0). (Exercise: it follows that for
each v, there is a unique such element −v.)

– Scalar multiplication distributes over vector addition and scalar addition, i.e., r · (u + v) =
r · u+ r · v and (r + s) · v = r · v + s · v for all r, s ∈ K and u,v ∈ V .

– 1 · v = v for all v ∈ V .

– (r · s) · v = r · (s · v) for all r, s ∈ K and v ∈ V .

21



• As is typical, we will often abuse notation and simply write V in place of (V,+,×).

– For example, we may speak of “the vector space R3”, whereas the vector space is really the
triple (R3,+,×).

• Examples:

– The original and most important example of a K-vector space is the set Kn of n-tuples of
elements of K. Addition and multiplication are given component-wise, i.e., (u1, . . . , un) +
(v1, . . . , vn) = (u1 + v1, . . . , un + vn), and r · (v1, . . . , vn) = (rv1, . . . , rvn) for r ∈ K.

∗ (One should check that these operations indeed satisfy the axioms!)
∗ Of course, we usually picture R2 as the set of points in a plane with a fixed pair of coordinate

axes and chosen units of length, and likewise R3 is pictured as 3-dimensional space (and
R1 as a line).

∗ (However, when considering them as vector spaces, we should really regard R2, for instance,
as the set of arrows in the given plane, where we identify two arrows if one can be brought
on top of the other by a translation; the reason is that it doesn’t make sense to add or
scale points, but we do know how to add arrows (in the usual head-to-tail manner) and
scale them. The identification between arrows and points of course follows from placing
the tail an arrow at the origin and passing to the point at its head.)

– A related example is the set Km×n of m× n-matrices. Formally, this is the set of functions

{(i, j) | 1 ≤ i ≤ m; 1 ≤ j ≤ n} → K.

∗ As with tuples, given a matrix A, we write Aij in place of A(i, j), and we represent a
matrix in the familiar way as a box of numbers:

A =

A11 · · · A1n
...

...
Am1 · · · Amn

 .
∗ We also write A = (Aij)1≤i≤m,j≤1≤n or just A = (Aij).
∗ Addition and scalar multiplication are again given component-wise: (A+B)ij = Aij +Bij

and (r ·A)ij = r ·Aij for r ∈ K.
∗ Of special interest are the vector spaces Kn,1 of column vectors and K1,n of row vectors of

length n. Of course, there are bijections Kn ∼= Kn,1 ∼= K1,n, and we may sometimes abuse
notation and simply write Kn in place of Kn,1.

– The above two examples generalize: given any set S, the set KS of all functions S → K is a
vector space with operations (f + g)(s) = f(s) + g(s) and (r · f)(s) = r · f(s).

∗ In particular, the set RR of all functions R → R becomes a vector space in this way.
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7 Feb 17, More linear algebra

7.1 Subspaces

• A linear subspace (or just subspace) of a vector space V is a subset W ⊂ V which is closed under
addition and scalar multiplication:

– This means that u,v ∈W implies u+ v ∈W and rv ∈W for all r ∈ K.

– In this case, W is again a vector space, with the same operations + and ×.

• The most familiar examples are the subspaces of R3, which are the planes and lines passing through
the origin, as well as R3 itself and the singleton set {0} ⊂ R3.

• Other interesting examples of vector spaces arise as subspaces of RR (or more generally of RI for
any domain I ⊂ R):

– The set of continuous functions C0(I) and the set of smooth functions C∞(I) are each subspaces
of RR (as is Ck(I) for any k).

– The set of polynomial functions p(x) =
∑n

i=0 aix
i (with n ∈ N and ai ∈ R) is a subspace of

RR, and is usually denoted R[x].
– There is a further subspace R≤d[x] consisting of polynomials of degree at most d.

– Similarly, one can consider polynomials C[x] (and C≤d[x]) over C.

– One should contemplate why these are all in fact subspaces!

7.2 Basis, dimension, etc.

• Given vectors v1, . . . ,vn in a vector space V , a linear combination of these vectors is any vector of
the form

∑n
i=1 aivi = a1v1 + · · ·+ anvn with a1, . . . , an ∈ K.

• The span Span(S) of a subset S ⊂ V is the set of all linear combinations
∑n

i=1 aivi with v1, . . . ,vn ∈
S.

• We say that S spans V or is a spanning set if Span(S) = V , i.e., if every element of V is a linear
combination of elements in S.

• We say that S is linearly independent if, whenever v1, . . . ,vn ∈ S are distinct elements and a1v1 +
· · ·+ anvn = 0, then a1 = · · · = an = 0

– Equivalently, each element of V can be represented in at most one way as a linear combination
of elements of S.

– Equivalently, no element of S is a linear combination of the other elements.

• A basis for V is a subset B which is both spanning and linearly independent (or equivalently, such
that every vector in V can be represented in exactly one way as a linear combination of elements of
S).

– Kn has the standard basis e1, . . . , en, where ei is the vector ei = (0, . . . , 1, . . . , 0) with a single
1 in the i-th place and 0 elsewhere.

– It is often useful to regard a basis not as a set B ⊂ V , but as a tuple B ∈ V n; in other words,
we remember the order of the elements in B, and in this case refer to B as an ordered basis.

– (However, we may sometimes abuse terminology and simply say “basis” when we mean “ordered
basis”.)
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• If V has a basis B which is finite, then it is called finite-dimensional; otherwise, it is called
infinite-dimensional.

• Theorem: if V is finite-dimensional, then any two bases of V have the same number of elements,
and this number is called the dimension dim(V ) of V ; moreover, any linearly independent set of
vectors in V has at most dimV elements.

– Roughly speaking, the proof proceeds by taking an arbitrary linearly independent set S =
{u1, . . . ,vk} ⊂ V and an arbitrary spanning set T = {v1, . . . ,vl} ⊂ V , and swapping out
vectors in T for vectors in S one by one until a new spanning set is produced which includes
all the vectors in S. This proves that k ≤ l for any such sets S and T (and in particular that
k = l if S and T are both bases).

• Examples of finite-dimensional vector spaces:

V Kn Km×n K≤d[x]

dim(V ) n m · n d+ 1

– Examples of infinite-dimensional vector spaces: RR, C0(R), C∞(R),R[x].

• Lemma: given any set v1, . . . ,vk of linearly independent vectors in a vector space V , and a vector
vk+1 /∈ Span{v1, . . . ,vk}, the set {v1, . . . ,vk+1} is still linearly independent.

• Corollary (of the theorem and the lemma): if V is finite-dimensional, then any subspace W ⊂ V
is finite-dimensional, and if dimW = dimV , then W = V .

– Indeed, if W were infinite-dimensional, we would have more than dimV linearly independent
vectors in V .

– And if dimW = dimV and W ⊊ V , then by the Lemma, we could extend a basis of W to a
larger linearly independent set of vectors, which would thus have more than dimV elements.

• Another Corollary: any linearly independent set of vectors v1, . . . ,vk ∈ V in a finite-dimensional
space can be extended to a basis v1 . . . ,vn of V .

– Indeed, as long as k < n, we must have W = Span{v1, . . . ,vk} ⊊ V , hence we can find some
vk+1 in V −W , and the set {v1, . . . ,vk+1} is still linearly independent; eventually, we will have
k = n, and then v1, . . . ,vn will have to constitute a basis.
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8 Feb 19, Linear maps

8.1 Linear maps

• A function f : V →W between two vector spaces is linear if it preserves addition and scalar multi-
plication, i.e., f(v +w) = f(v) + f(w) and f(rw) = r · f(w) for all r ∈ K.

– It follows (by induction) that f preserves arbitrary linear combinations, i.e., that f(a1v1 +
· · ·+ anvn) = a1(v1) + · · ·+ anf(vn) for any v1, . . . ,vn ∈ V and a1, . . . , an ∈ K.

– A linear map f : V → V from a vector space to itself is sometimes called a linear operator.

• Given a basis b1, . . . ,bn of V , any linear map f : V → W is determined by its values f(bi) on the
basis elements.

– And conversely, given any vectors w1, . . . ,wn, there is a unique linear map f : V → W with
f(bi) = wi for all i; it is given by f

(∑n
i=1 vibi

)
=

∑n
i=1 viwi.

• Exercise: the linear maps f : Km → Kn are exactly those of the form

f

 v1...
vm

 =

 a11v1 + · · ·+ a1nvn
...

am1v1 + · · ·+ amnvn


for some elements aij ∈ K.

– In other words, we have f(v) = A · v, where A = (aij).

– Here, we are using matrix multiplication, which we recall is the operation K l×m × Km×n →
K l×n given by (A ·B)ij =

∑m
k=1Aik ·Bkj .

• For any two vector spaces V and W , we write L(V,W ) for the set of all linear maps V → W ; this
is a subspace of the vector space W V .

– In the case V =W , we simply write L(V ) for the space L(V, V ) of linear operators on V .

• Another important example of a linear map is the derivative operator D = d
dx : C

∞(I) → C∞(I);
this can also be considered as a linear map R≤d[x] → R≤d−1[x] or for any d > 0.

– Similarly, we have seen the first-order linear differential operators L : C∞(I) → C∞(I) given by
L(y) = Dy + g(x)y = y′ + g(x)y for some g : I → R.

– There is also the integral map
∫ x
0 : C0(R) → C0(R).

• The kernel or nullspace of a linear map f : V →W is the subspace ker(f) ⊂ V defined by ker(f) =
{v ∈ V | f(v) = 0}.

– Exercise: a linear map is injective if and only if its nullspace is {0}.

• The image im(f) of a linear map f : V →W (or in fact of any function between two sets) is the set
im(f) = {f(v) | v ∈ V }.

• Theorem (the rank-nullity theorem or dim sum theorem): if V and W are finite-dimensional and
f : V →W is linear, then dim(V ) = dimker(f) + dim im(f).

– In particular, if dimV = dimW , then f is injective if and only if it is surjective.

• An isomorphism between vector spaces V and W is a linear map V →W which is also a bijection.
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– In this case, the inverse map W → V is also linear (hence also an isomorphism).

– If there exists an isomorphism between V and W , we say that V and W are isomorphic, and
write V ∼=W .

• Note that isomorphism is an equivalence relation: it is reflexive (V ∼= V ), symmetric (V ∼= W ⇒
W ∼= V ), and transitive U ∼= V ∧ V ∼=W ⇒ U ∼=W .

• Theorem: V is of finite-dimension n if and only if V ∼= Kn.

– Indeed, if V has a basis b1, . . . ,bn, then each vector v ∈ V has coordinates v1, . . . , vn with
respect to this basis, determined by v = v1b1 + · · · vnbn; the map V → Kn taking v to
(v1, . . . , vn) is then the desired isomorphism.

– An important consequence of this is that any linear map f : V →W between finite-dimensional
vector spaces (say, with dimV = m and dimW = n) can be represented by a n ×m matrix,
because V ∼= Km and W ∼= Kn.

∗ The matrix representation of f will depend on a choice of isomorphisms V ∼−→ Km and
W ∼−→ Kn, which is to say on a choice of ordered bases of V and W .

∗ Given such ordered bases B = (v1, . . . ,vm) and C = (w1, . . . ,wn), the resulting matrix
A ∈ Kn×m can be described directly by the formula f(vi) =

∑n
j=1Ajiwj (i.e., the i-th

column of A consists of the coordinates of f(vi) with respect to C).
∗ Another way to say this is: if we write vB ∈ Kn×1 for the coordinate vector of v ∈ V

with respect to the ordered basis B, and similarly write wC ∈ Km×1 for the coordinates of
w ∈W with respect to C, then we have

(
f(v)

)
C = A · vB ∈ Km×1 for all v ∈ V .

• Other examples of isomorphisms:

– If dimV = m and dimW = n, then L(V,W ) ∼= Kn×m and in particular L(V ) ∼= Km×m.

– The existence of these isomorphisms follows from the above theorem just by comparing dimen-
sions, but one can also establish the isomorphisms more directly by sending each linear map
to the matrix representing it.

∗ But, again, it is important to remember that this isomorphism will depend on choosing
bases for V and W .

– Important exercise: The above isomorphism takes composition of linear maps to matrix multi-
plication: given finite-dimensional spaces U, V,W with chosen ordered bases, and linear maps
f : U → V and g : V → W represented by matrices A ∈ Km×l and B ∈ Kn×m, the composite
map g ◦ f : U →W is represented by the product B ·A.
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9 Feb 24, 3.7: Inner products

9.1 3.7A: General properties of inner products

• We introduce the notion of an inner product on a general vector space, which is a scalar-valued
binary function V × V → R satisfying certain axioms.

– While the concept of abstract vector space allows us to reproduce many of the geometric features
of the motivating example Rn, it does not allow us to define the notions of length or angle,
which are of course crucial to studying geometry in R2 and R3; it is inner products that allows
us to reproduce these notions in an arbitrary abstract vector space.

– Just as the very notion of vector space is meant to capture the main features of the archetypical
case Rn, so the notion of inner product is meant to capture the main features of the dot
product x ·y =

∑n
i=1 xiyi on Rn; again, this motivating example should be kept in mind while

considering the definition, but it’s also important to remember that there are other interesting
examples as well.

• If U, V,W are K-vector spaces, a function f : U ×V →W is bilinear if it is linear in each argument,
when the other argument is held fixed, i.e., f(au+ u′,v) = af(u,v) + f(u′,v) and f(u, av+ v′) =
af(u,v) + f(u,v′) for all u ∈ U , v ∈ V , and a ∈ R.

– (Examples: the cross-product × : R3 × R3 → R3, matrix multiplication Ka,b × Kb,c → Ka,c,
composition of linear maps L(U, V )× L(V,W ) → L(U,W ).)

• A bilinear form on a K-vector space V is a bilinear function β : V × V → K.

• An inner product on a real vector space V is a bilinear form β : V × V → R which is moreover

– symmetric, meaning ⟨u,v⟩ = ⟨v,u⟩ for all u,v ∈ V

– positive-definite, meaning that ⟨u,u⟩ > 0 for all u ̸= 0

• An inner product space is a pair (V, β), where V is a real vector space, and β : V × V → R is an
inner product on V .

– (Again, we often abuse notation, and just write say that “V is a inner product space”).

– (In particular, by “the inner product space Rn”, we mean Rn equipped with the standard inner
product.)

• Notation: for a given inner product β : V × V → R, we will usually prefer to write ⟨u,v⟩ in place
of β(u,v).

– Accordingly, we may forego the additional name β, and instead, inserting placeholders “−” for
u and v in the expression “⟨u,v⟩”, just refer to the inner product as ⟨−,−⟩ : V × V → R.

• Remarks:

– In light of the symmetry property, the bilinearity is equivalent to just being linear in one
argument.

– It follows from bilinearity that ⟨0,0⟩ = 0, and hence (by positive-definiteness) that ⟨v,v⟩ ≥ 0
for all v.

• Example: the bilinear forms on Rn are exactly the functions of the form ⟨u,v⟩ =
∑n

i,j=1 aijuivj for
some real numbers aij .
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– In other words, ⟨u, v⟩ = u⊤Av where A = (aij)
n
i,j=1, and where we are identifying R1×1 with

R.

– Recall here that for a matrix B ∈ K l×m, we write B⊤ ∈ Km×l for its transpose defined by
(B⊤)ij = Bji.

– In particular, if we take A to be the identity matrix In (defined by (In)ij = δij), we obtain the
dot product u · v, also known as the standard inner product on Rn.

∗ The symbol δij , called the Kronecker delta symbol, is defined to be 1 if i = j and 0
otherwise

∗ Often we will just write I instead of In when n is clear from context.

• It is easy to see that such a bilinear form u⊤Av is symmetric precisely when the matrix A is
symmetric, meaning A⊤ = A.

• Example 3.7.1

– It is more difficult to determine whether the bilinear form arising from a matrix A is positive-
definite.

– But here is an example: if A is a diagonal matrix (meaning Aij = 0 for i ̸= j) with positive
diagonal entries, then u⊤Av is positive definite (and hence an inner product, since A is clearly
symmetric).

– In this case ⟨u,v⟩ is given by the simple formula a11u1v1 + · · ·+ annunvn.

– For a completely specific example, ⟨u,v⟩ = u1u2 + 2v1v2 is an inner product on R2.

Complex inner products

• There is also a notion of inner products over the complex numbers, the standard example being the
function Cn × Cn → C given by (w, z) 7→ w · z.

– Here, we recall that for a complex number z = a + bi, its complex conjugate is defined by
z̄ = a− bi (reflection across the real axis).

– This has the fundamental property z · z̄ = |z|2, where we recall that the absolute value (or
modulus) of a complex number is defined by |z| =

√
a2 + b2 (distance from the origin in the

complex plane).

– Another fundamental property of the complex conjugate is that it is compatible with addition
and multiplication: z + w = z̄ + w̄ and z · w = z̄ · w̄.

– For a vector w ∈ Cn, the complex conjugate is defined component-wise: w = (w1, . . . , wn).

– We recall the important formulas Re z = 1
2(z + z̄) and Im z = 1

2(z − z̄), where Re and Im are
the real and imaginary parts, defined by Re(a+ bi) = a and Im(a+ bi) = b.

• In general, on a complex vector space V , we define a function ⟨−,−⟩ : V × V → C to be:

– sesquilinear if it is linear in its second argument and antilinear in its first argument, meaning
⟨au + v,w⟩ = ā⟨u,w⟩ + ⟨v,w⟩ and ⟨w, au + v⟩ = a⟨w,u⟩ + ⟨w,v⟩ for all u,v,w ∈ V and
a ∈ C.

– conjugate symmetric if ⟨u,v⟩ = ⟨v,u⟩ for all u,v ∈ V .

– an inner product if it is sesquilinear, conjugate symmetric, and positive definite (which as
before means ⟨v,v⟩ > 0 for all v ̸= 0).

– Again, a complex inner product space is a complex vector space equipped with an inner product.
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• Note that if V is a real vector space, and ⟨−,−⟩ : V × V → R is a real -valued function, then the
definitions of sesquilinear and conjugate symmetric reduce to those of “bilinear” and “symmetric”
(since ā = a for all a ∈ R).

– Thus, for conciseness, we can define an inner product on a real or complex vector V all at once
by saying it is a sesquilinear, conjugate symmetric, positive definite function V × V → K.

Norms

• Now let V be a real or complex inner product space.

• We define the norm or length of a vector ∥v∥ to be the non-negative real number ∥v∥ =
√
⟨v,v⟩.

– Note that ∥v∥ = 0 ⇐⇒ v = 0 by positive-definiteness of ⟨−,−⟩.
– Some people just write |v| for the norm instead of ∥v∥.

• The norm has the following properties:

– (“Positivity”) ∥v∥ > 0 for all v ̸= 0

– (“Linearity”) ∥av∥ = |a| · ∥v∥ for all a ∈ K and v ∈ V .

– (“Triangle inequality”) ∥u+ v∥ ≤ ∥u∥+ ∥v∥
– (In general, one calls a function V → R having these properties a norm on V ; there are examples

of norms that do not arise from inner products, an example being ∥−∥3 : Rn → R given by
∥v∥3 = (

∑n
i=1 v

3
i )

1/3.)

• We have the important formula (in the real case): ∥u+ v∥2 = ∥u∥+ ∥v∥+ 2⟨u, v⟩.

– In the complex case, the formula is ∥u+ v∥2 = ∥u∥+ ∥v∥+ 2Re⟨u, v⟩
– These formulas show that the inner product can be recovered from the norm, namely (in the

real case) as ⟨u, v⟩ = 1
2(∥u+ v∥ − ∥u∥ − ∥v∥).

• Theorem (the Cauchy-Schwartz inequality): |⟨u,v⟩| ≤ ∥u∥ · ∥v∥ for all u,v ∈ V , where
equality holds if and only if u and v are colinear (i.e., linearly dependent).

• Proof :

– We give the proof in the real case; the complex case is very similar but a little bit more
complicated.

– The case in which u = 0 or v = 0 is obvious, since then both sides are equal to 0 (and u,v are
colinear in this case).

– Next, assume u,v ̸= 0. Using bilinearity of the inner product, and the linearity of the norm,
we may divide both sides by ∥u∥ · ∥v∥ to obtain the equivalent inequality |⟨a,b⟩| ≤ ∥a∥ · ∥b∥,
where a = u/∥u∥ and b = v/∥v∥.

– We observe that ∥a∥ = ∥b∥ = 1; moreover, a,b are colinear if and only if u,v are. In other
words, we have reduced to the case of proving the inequality for unit vectors.

– In this case, we have 0 ≤ ∥a± b∥2 = ∥a∥2 + ∥b∥2 ± 2⟨a,b⟩ = 2± 2⟨a,b⟩, and hence ±⟨a,b⟩ ≤
1 = ∥a∥ · ∥b∥, as desired.

– Note that the inequality above is an equality if and only if a± b = 0.

• Example 3.7.1 again
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– Note that for the inner product ⟨u,v⟩ = u1v1+2u2v2 on R2, the resulting geometry in the plane
is “distorted”. For example, (1, 0) is still a unit vector, but (0, 1) now has length

√
02 + 2 · 12 =√

2.

– The “unit circle” (the set of all vectors of length 1) is now an ellipse.

Angles

• We continue to fix a real or complex inner product space V .

• For u,v ̸= 0, the Cauchy-Schwartz inequality can be rephrased as −1 ≤ ⟨u,v⟩
∥u∥∥v∥ ≤ 1 for any u,v ∈ V .

• It follows that there is a unique θ ∈ [0, π] with cos θ = ⟨u,v⟩
∥u∥∥v∥ .

• We define the angle ∠(u,v) between u and v to be this number θ.

– This recovers the usual notion of angle in R2 and R3 because of the well-known formula u ·v =
∥u∥∥v∥ cos θ.

– u and v are called orthogonal, written u ⊥ v, if θ = π/2, or in other words if u · v = 0.

– This definition still makes sense when u = 0 or v = 0.

• We have the following version of the Pythagorean theorem:

– If u ⊥ v, then ∥u+ v∥2 = ∥u∥2 + ∥v∥2.

• Example 3.7.1 again

– Note again that the non-standard inner product ⟨u,v⟩ = u1v1 + 2u2v2 on R2 “distorts” the
notion of angle.

– For example, (1, 0) and (0, 1) are still orthogonal, but (1, 1) and (1,−1) are no longer orthogonal,
since ⟨(1, 1), (1,−1)⟩ = 1− 2 ̸= 0.

Example 3.7.2

• On the vector space C0([0, 2π]) of continuous real-valued functions on the interval [0, 2π], we can
define an inner product by the formula

⟨f, g⟩ =
∫ 2π

0
f(x)g(x) dx.

– One should check that this is indeed an inner product.

• This inner product is of central importance in Fourier analysis, the mathematical subject underpin-
ning of signal processing.

– In this subject, it is also important to consider continuous complex-valued functions; in this
case, the inner product can be defined by ⟨f, g⟩ =

∫ 2π
0 f(x)g(x) dx.
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10 Feb 26, 3.7B: Orthogonal bases; dual spaces

10.1 3.7B: Orthogonal bases

• A set S ⊂ V of vectors in a real or complex inner product space V is orthonormal if ⟨u,u⟩ = 1 and
⟨u,v⟩ = 0 for all u,v ∈ V with u ̸= v; i.e., all the vectors are unit vectors, and they are mutually
orthogonal.

– Any orthonormal set is linearly independent; indeed, if a1v1+· · ·+anvn = 0 where ⟨vi,vj⟩ = δij
for all i, j, then using linearity of ⟨−,−⟩ and orthonormality, 0 = ⟨vi,0⟩ = ⟨vi, a1v1 + · · · +
anvn⟩ = ai for all i.

• An orthonormal basis is a basis which is also an orthonormal set.

• The standard example of an orthonormal basis is the standard basis of Rn or Cn (equipped with
the standard inner product).

• In general, a basis b1, . . . ,bn of Rn is orthonormal if and only if the matrix B with columns
b1, . . . ,bn is an orthogonal matrix, meaning that B⊤ ·B = I.

We have the following nice formula for the representation of any vector with respect to an orthonormal
basis.

Theorem 7.4

• If b1, . . . ,bn is an orthonormal basis for an inner product space V , then v = ⟨b1,v⟩b1 + · · · +
⟨bn,v⟩bn for any v ∈ V .

• Proof:

– Since b1, . . . ,bn is a basis, we know that v = v1b1 + · · ·+ vnbn for some uniquely determined
v1, . . . , vn ∈ K.

– Using linearity and orthonormality (as in the above proof that orthonormal sets are linearly
independent), we conclude that ⟨bi,v⟩ = vi for all i.

Similarly, we have a nice formula for the inner product of any two vectors represented in terms of an
orthonormal basis.

Theorem 7.6

• If b1, . . . ,bn ∈ V is an orthonormal basis for an inner product space V , then for any two vectors
x = x1b1+ · · ·+xnbn and y = y1b1+ · · ·+ynbn, their inner product is given by ⟨x,y⟩ =

∑n
i=1 x̄iyi.

– This follows immediately from (sesqui-)linearity and orthonormality.

Projection

• The above Theorem 7.4 can be understood geometrically as “any vector is the sum of its projections
onto the vectors of any orthonormal basis”; to understand this, we need the notion of projection.

• If u ∈ V is a vector in an inner product space V , the (orthogonal) projection onto u is the linear
map Πu : V → Spanu given by Πuv = ⟨u,v⟩

⟨u,u⟩u.

– When u is a unit vector, this simplifies to Πuv = ⟨u,v⟩u.
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– In this case, the length of the projection of v onto u is simply given by |⟨u,v⟩|.
– To understand where this definition comes from, one should consider the case of R2 or R3, and

draw a triangle and do some trigonometry. (The definition is also justified by Theorem 7.5
below.)

• More generally, let b1, . . . ,bm ∈ V be any orthonormal set of vectors, and letW = Span(b1, . . . ,bm)
(so that b1, . . . ,bm is an orthonormal basis of W ).

– We define the (orthogonal) projection onto W to be the linear map ΠW : V → W given by
ΠWv = ⟨b1,v⟩b1 + · · · ⟨bm,v⟩bm (this should be compare to Theorem 7.4 above).

Theorem 7.5

• With V,W,b1, . . . ,bm as above, for any v ∈ V , the orthogonal projection ΠWv ∈ W is the unique
closest vector to v in W , i.e., we have ∥v −ΠWv∥ ≤ ∥v −w∥ for any w ∈ W , and if this is an
equality, then w = Πwv.

• In particular, this proves that the orthogonal projection map ΠW depends only on the finite-
dimensional subspace W and not on the given choice of orthonormal basis.

• The proof rests on the following observation, which is of independent interest: that v−ΠWv ⊥ W
\) (“v −ΠWv is orthogonal to W ”), by which we mean (v −ΠWv) ⊥ w for every w ∈W .

– This follows by linearity as soon as we show that (v−ΠWv) ⊥ bi for every bi, and this follows
immediately from sesquilinearity and orthonormality.

• Proof of the theorem:

– Using the Pythagorean theorem and (v −ΠWv) ⊥W , we have, for any w ∈W , that

∥v −w∥2 = ∥(v −ΠWv) + (ΠWv −w)∥2 = ∥v −ΠWv∥2 + ∥ΠWv −w∥2 ≥ ∥v −ΠWv∥2.

– Moreover, the above inequality is an equality if and only if ∥ΠWv −w∥ = 0, i.e., if and only if
ΠWv = w; this proves uniqueness.

The Gram-Schmidt process

• What we showed above is that there exists an orthogonal projection operator ΠW onto any finite-
dimensional subspace W assuming W has an orthonormal basis.

• We now recall the Gram-Schmidt process, which shows that any finite-dimensional inner prod-
uct space does have an orthonormal basis.

– More precisely, for any finite set of vectors v1, . . . ,vm ∈ V is an inner product space, the Gram-
Schmidt process gives explicit formulas for a set of orthonormal vectors b1, . . . ,bk having the
same span.

• The process is to first produce a set of orthogonal vectors wi, by subtracting from each vi the
orthogonal projection onto the span of the previous vectors.

– That is, we define w1 = v1, and then inductively define

wi+1 = vi −ΠSpan{w1,...,wi}vi = vi − ⟨w1,v⟩
∥w1∥2 w1 − · · · − ⟨wi,v⟩

∥wi∥2 wi.
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– If along the way, any vi was dependent on the previous vj ’s, then we get wi = 0, and in
this case, we discard it (that is, we replace our original sequence v1, . . . ,vm with the sequence
v1, . . . ,vi−1,vi+1, . . . ,vm).

– We then define bi =
wi

∥wi∥ to obtain an orthonormal set.

• (One can normalize the wi to obtain the bi “along the way” while performing the algorithm, instead
of doing it at the end, but doing so usually makes the computations more complicated.)

10.2 3.7C: Orthogonal transformations

• A linear map f : V →W between inner product spaces is orthogonal if it preserves the inner product,
i.e., ⟨fu, fv⟩ = ⟨u,v⟩ for all u,v ∈ V .

– Equivalently, ∥fv∥ = ∥v∥ for all v ∈ V (this follows from the formula which recovers the inner
product from the norm).

– Equivalently, ∥fu− fv∥ = ∥u− v∥ for all u,v ∈ V , i.e., f preserves the distances between
points.

• If b1, . . . ,bn is an orthonormal basis of V , then f is orthogonal if and only if f(b1), . . . , f(bn) is
still an orthonormal set.

– The ⇒ direction is immediate.

– The other direction follows because if u =
∑

i uibi and v =
∑

i vibi ∈ V , then ⟨u,v⟩ =∑
i ūivi =

∑
i,j ūivj⟨bi,bj⟩, and ⟨fu, fv⟩ =

∑
i,j ūivj⟨f(bi), f(bj)⟩ using the linearity of f and

sesquilinearity of the inner product.

• If V and W are real vector spaces, and we fix orthogonal bases of V and W , then f : V → W is
orthogonal if and only if the matrix A ∈ Rm×n representing f with respect to these bases satisfies
A⊤ ·A = I.

• One can show that the orthogonal transformations R2 → R2 and R3 → R3 (equipped with the
standard inner product) are exactly the usual rotations and reflections.

• An isomorphism of inner product spaces (or linear isometry) is a bijective orthogonal linear map.

– We say that two inner product spaces (V, ⟨−,−⟩V ) and (W, ⟨−,−⟩W ) are isomorphic, denoted
(V, ⟨−,−⟩V ) ∼= (W, ⟨−,−⟩W ) if there exists an isomorphism of inner product spaces V →W .

• Theorem: any n-dimensional inner product space V over K is isomorphic to Kn (with the standard
inner product).

– Indeed, we have already seen that any choice b1, . . . ,bn of basis for V determines a linear
isomorphism f : V → Kn with f(bi) = ei, the i-th standard basis vector.

– If this is moreover an orthonormal basis, then f is an orthogonal map, and hence an isomorphism
of inner product spaces.

• Example 3.7.1 again

– The theorem gives a new perspective on the “distorted” inner product ⟨u,v⟩ = u1v1 + 2u2v2:
we have an isomorphism f : R2 → R2 taking the distorted inner product to the standard inner
product, namely f(v1, v2) = (v1,

√
2 · v2).

– Hence, we can understand the distorted inner product ⟨u,v⟩ as being described by the proce-
dure “first apply f , then take the ordinary inner product”.
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10.3 Dual spaces

• The dual space V ∗ of a vector space V over K is the vector space L(V,K) of all linear maps V → K;
elements of V ∗ are sometimes referred to as covectors, dual vectors, functionals, or linear forms.

• Each linear map f : V → W between vector spaces induces a dual map f∗ : W ∗ → V ∗ by composi-
tion: for φ ∈W ∗, we set f∗(φ) = φ ◦ f ∈ V ∗.

– The dual map f∗ is linear.

– Moreover, the operation f 7→ f∗ determines a linear map L(V,W ) → L(W ∗, V ∗).

– Given linear maps U f−→ V
g−→W , we have (g ◦ f)∗ = f∗ ◦ g∗ : W ∗ → U∗.

• Any basis b1, . . . ,bn of V gives rise to a dual basis φ1, . . . , φn of V ∗, determined by the conditions
φi(bj) = δij for all i, j.

– That these conditions determine functionals φi follows from the fact that a linear map is
completely specified by giving its values on any given basis.

– To see that the φi form a basis: linear independence follows from the fact that if φ =
∑n

i=1 aiφi,
then ai = φ(bi) for all i; and the spanning property follows from the fact that for any φ ∈ V ∗,
we have φ =

∑n
i=1 φ(bi)φi.

∗ Both these facts are established by evaluating both sides of the equation on all of the basis
vectors bi.

• Dual maps are related to transposes of matrices in the following way:

– Let V and W be vector spaces over K of dimensions m = dimV and n = dimW , and fix bases
BV of V and BW of W , and hence dual bases B∗

V and B∗
W of V ∗ and W ∗. Given a linear map

f : V → W represented by a matrix A ∈ Kn×m with respect to BV and BW , the dual map
f∗ : W ∗ → V ∗ is represented by the matrix A⊤, with respect to the dual bases of B∗

W and B∗
V .

– To prove this, write BV = (v1, . . . ,vm) and w1, . . . ,wn, and B∗
V = (φ1, . . . , φm) and B∗

W =
(ψ1, . . . , ψn).

∗ We then have by definition that f(vi) =
∑n

j=1Ajiwj , and hence that ψj(f(vi)) = Aji.
∗ Similarly, if B ∈ Km×n is the matrix representing f∗ with respect to B∗

W and B∗
V , then

f∗(ψj) =
∑m

i=1Bijφi, and hence (f∗(ψj))(vi) = Bij .
∗ Hence

Bij = (f∗(ψj))(vi) = ψj(f(vi)) = Aji,

so B = A⊤, as desired.

• Lemma: for any non-zero vector v ∈ V in a finite-dimensional vector space, there is some covector
φ ∈ V ∗ with φ(v) ̸= 0.

– Indeed, we may extend {v} to a basis, and take φ to be the dual basis vector corresponding
to v, so that φ(v) = 1.

– (In fact, this Lemma also holds for infinite-dimensional spaces.)

• There is a natural linear map α : V → V ∗∗ from a vector space to the dual of its dual space, given
by α(v) = evv, where evv : V

∗ → K is defined by evv(φ) = φ(v).

– By the Lemma, α is always injective, since if evv = 0, then φ(v) = evv(φ) = 0 for every
φ ∈ V ∗.
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– If V is finite-dimensional, it follows that α is an isomorphism, since V and V ∗∗ have the same
dimension.

– That is, the map α provides a canonical isomorphism between any finite-dimensional
vector space and its double dual space.

• Note that if V is finite-dimensional, we not only have V ∼= V ∗∗, but also V ∼= V ∗, simply for
dimension reasons: V ∼= KdimV ∼= V ∗.

– However, unlike with V ∗∗, there is no canonical such isomorphism; one has to choose bases of
V and V ∗ in order to produce an isomorphism V → V ∗.

– (Actually, it suffices to just choose a basis of V , since this induces a dual basis of V ∗, and
hence an isomorphism V ∼−→ V ∗ taking each basis vector in V to the corresponding dual basis
vector.)

• There is another important source of isomorphisms V ∼−→ V ∗: on any real inner product space V there
is a canonical (i.e., only depending on the inner product, but on no further choices) isomorphism
ρ : V ∼−→ V ∗, which takes a vector v ∈ V to the functional ρ(v) : V → R defined by ρ(v)(w) = ⟨v,w⟩.

– ρ is injective by positive-definiteness: if ρ(v) = 0, then ⟨v,v⟩ = ρ(v)(v) = 0 and hence v = 0.

– It then follows that ρ is an isomorphism since dimV = dimV ∗.

• If V = Rn,1 is the space of column vectors, then V ∗, the space of linear maps Rn,1 → R ∼= R1,1, is
naturally identified with the space R1,n of (1× n)-matrices, i.e., row vectors.

– Under these identifications, the isomorphism V ∼−→ V ∗ induced by the standard inner product
on Rn,1 is then simply the transposition map Rn,1 ∼−→ R1,n.

– This happens to be the same as the isomorphism induced by taking the standard basis of Rn,1

to its dual basis in R1,n.
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11 Mar 3, 11.1: differential operators

11.1 11: Second-order equations

• We’ll now start to study second order equations y′′ = F (x, y, y′).

• Mostly we’ll look at linear equations y′′ + f(x)y′ + g(x)y = h(x), and more specifically, linear
equations with constant coefficients y′′ + ay′ + by = h(x) with a, b ∈ R.

– Some examples:

y′′ − 2y = x

y′′ − 3y = ex

y′′ − 3y′ + 2y = f(x)

• Later, we’ll also look at some nonlinear equations such as y′′ + (y′)2 = 0.

11.2 11.1: Differential operators

• To solve a first-order linear equation y′+g(x)y = f(x), we used the exponential multiplier e
∫
g(x) dx.

– If the equation has constant coefficients y′ + ry = f(x) (as in Newton’s law of cooling), this
simply becomes erx.

– We recall that if y is any solution, we have erx(y′+ry) = erxf(x) and hence d
dx(e

rxy) = erxf(x)
and y = Ce−rx + e−rx

∫
erxf(x) dx for some C ∈ R.

– In what follows, we will be making further use of such exponential multipliers.

• Before proceeding, we introduce some notation

• For a given interval I, recall that we have the vector space C∞(I) of smooth functions on I.

– We denote by D : C∞(I) → C∞(I) the differentiation operator given by Dy = y′.

– We recall thatD can alternatively be considered as having different domains: for example, it can
regarded as an operator D : R[x] → R[x] acting only on polynomial functions; or alternatively
as a linear map D : Ck+1(I) → Ck(I) which lowers the degree of differentiability by one.

– It is good to keep these in mind and to be flexible in one’s interpretation of D.

– (There is a modern answer to the question of what is the “correct” “largest” space of functions
on which D can be said to act: this is the space of so-called Schwartz distributions; these
are generalizations of functions, which include all of the continuous functions (even the non-
differentiable ones!), and include (useful!) exotic entities like the Dirac delta distribution, which
is the mass-distribution function of a point particle with non-zero mass. We may return to this
later.)

• We recall that the set L(V ) of operators on any vector space V itself forms a vector space.

– Thus we can form new differential operators by addition and scalar multiplication. For example
(2D + 3I)y = 2Dy + 3Iy = 2y′ + 3y, where I ∈ L(V ) is the identity operator ; normally we just
omit I and write 2D + 3 in place of 2D + 3I.

– Moreover, we have the bilinear composition map ◦ : L(V )× L(V ) → L(V ); given f, g ∈ L(V ),
we may just write g · f or gf for g ◦ f and write f2 for f ◦ f .
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– We can thus obtain further examples by composition: for example (D2− 1)y = D2y− 1 · y and
(D+ s)(D+ t)y = (D+ s)(y′ + ty) = D(y′ + ty) + s(y′ + ty) = y′′ + (s+ t)y′ + sty. Note that
using bilinearity of composition, we can say directly that (D+ s)(D+ t) = D2 + (s+ t)D+ st.

• We may thus say that a second-order linear differential equation with constant coefficients is one
of the form (D2 + aD + b)y = f(x), the entity on the left being a second-order linear differential
operator.

Characteristic equations

• Let us now consider a homogeneous second-order linear differential equation y′′ + ay′ + b = 0.

• Motivated by the first-order homogeneous linear equation, let us look for solutions of the form
y = erx.

– (Such a guess about the general form of a solution is often referred to using the German word
Ansatz, meaning “approach” or “starting point”; so we can say “we make the Ansatz y = erx”.)

– We find that this y is a solution if and only if (r2 + ar + b)erx = 0.

– The resulting equation r2 + ar + b = 0 is called the characteristic equation associated to the
given differential equation.

Example 11.1.3

• y′′ − 3y′ + 2y = 0 has characteristic equation r2 − 3r + 2 = 0.

• Factoring, we find this has roots 1 and 2.

• Thus y1(x) = ex and y2(x) = e2x are both solutions.

• Since the operator L = D2 − 3D+ 2 (for which our equation is Ly = 0) is linear, we have L(c1y1 +
c2y2) = 0 for any c1, c2 ∈ R.

• Thus, y(x) = c1e
x + c2e

2x is a solution for any c1, c2 ∈ R.

• In fact, this is the general solution, as we will learn how to prove next.

37



12 Mar 5, 11.1B and 11.2A: More second-order equations

12.1 11.1B: Factoring operators

• To find the general solution to a homogeneous second-order linear differential equation Ly = 0, we
factor L and reduce to solving first-order linear equations.

Example 11.1.4

• We seek all solutions y : R → R to y′′ + 5y′ + 6 = 0.

• We have D2 + 5D + 6 = (D + 3)(D + 2).

• Thus, we are seeking solutions of (D + 3)(D + 2)y = 0.

• We see that that the function u = (D + 2y) must solve the first-order linear ODE (D + 3)u = 0;
but we know the solutions to such an ODE: we must have (D + 2)y = u = c1e

−3x for some c1 ∈ R.

• We have reduced to the (non-homogeneous) first-order ODE y′+2y = c1e
−3x; we know how to solve

this with exponential multipliers.

• We have e2x(y′ + 2y) = c1e
−x, hence d

dx(ye
2x) = c1e

−x, hence ye2x = −c1e−x + c2, hence y =
−c1e−3x + c2e

−2x.

• We have thus found the general solution; as expected, it is the same as the one resulting from our
Ansatz y = erx.

Theorem 11.1.1

• The above procedure leads to the following general theorem:

– Given a differential equation y′′ + ay′ + b = 0, if the corresponding characteristic equation
r2 + ar + b = 0 has two distinct roots r1, r2 ∈ R, then the general solution y : R → R to the
equation is y = c1e

r1x + c2e
r2x.

– If the characteristic equation has a double root r1 = r2 ∈ R, then the general solution is
y = c1e

r1x + c2xe
r1x.

– In both cases, for any x0, y0, z0 ∈ R, the initial value problem
y′′ + ay′ + b = 0

y(x0) = y0

y′(x0) = z0

has a unique solution (i.e., these initial conditions uniquely determine the coefficients c1, c2 in
the general solution).

• The proof:

– As above, we can write the equation as (D − r1)(D − r2)y = 0.

– We thus have that y : R → R is a solution if and only if (D−r2)y = c1e
r1x, i.e., y′−r2y = c1e

r1x

for some c1 ∈ R.

– This is equivalent to d
dx(ye

−r2x) = c1e
(r1−r2)x.

– If r1 ̸= r2, this is equivalent to ye−r2x = (r1 − r2)
−1c1e

(r1−r2)x + c2 for some c2 ∈ R, and hence
to y = c1e

r1x + c2e
r2x for some c1, c2 ∈ R.
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– If r1 = r2, so that e(r1−r2)x = 1, the above is equivalent to ye−r2x = c1x+ c2 for some c2 ∈ R,
and hence to y = c1e

r1x + c2xe
r1x for some c1, c2 ∈ R.

– In the first case, the initial conditions y(x0) = y0 and y′(x0) = z0 give{
y0 = c1e

r1x0 + c2e
r2x0

z0 = r1c1e
r1x0 + r2c2e

r2x0

– In the second case, they give{
y0 = c1e

r1x0 + c2x0e
r2x0

z0 = r1c1e
r1x0 + c2(1 + r1x0)e

r2x0

– In both cases, this is a system of two linear equations in c1 and c2, and we claim in both cases
that this has a unique solution (c1, c2) ∈ R2.

• In fact, it is not hard to solve these systems of linear equations directly, but it is better to do a little
more linear algebra review and recall some general principles.

– Namely, recall that an inverse of a square matrix A ∈ Kn×n, is a matrix A−1 ∈ Kn×n with the
property that A · A−1 = A−1 · A = In. If A has an inverse (or as we say, if it is invertible), it
has a unique inverse.

– If A is invertible, then for any b ∈ Kn, the system of equations Ax = b has the unique solution
x = A−1b.

– A criterion for invertibility is that A is invertible if and only if its determinant detA is non-zero.

– We will recall more about determinants later; for now, we recall that for a 2 × 2-matrix A ∈
K2×2, the determinant is given by detA = A11A22 −A12A21.

• Returning to the above case, the determinants of the matrices appearing in those systems of linear
equations are in the first case e(r1+r2)x0(r1 − r2), which is non-zero since we are assuming r1 ̸= r2,
and in the second case e(r1+r2)x0(1 + r1x0 − r1x0) ̸= 0.

12.2 11.2A: Complex Exponentials

• We have solved the homogeneous second-order linear equation y′′ + ay′ + b = 0 in the case that the
characteristic equation r2 + ar + b = 0 has two real roots.

• As we know, a general quadratic polynomial may have complex roots; to deal with the corresponding
differential equation in this case, we must introduce the complex exponential function.

• For this purpose, let us first ask ourselves: what is the exponential function, and also: what are the
cosine and sine functions?

• As we have seen, one way to characterize the exponential function is as the unique solution y = ex

to the IVP y′ = y; y(0) = 1.

– We saw how to prove uniqueness assuming that we already have the exponential function
satisfying d

dxe
x = ex and e0 = 1; but how do we know that such a function exists?

– One way is to use power series.

• Remember that any power series function f(x) =
∑∞

n=0 anx
n has a radius of convergence R ∈ [0,∞],

such that the series converges whenever |x| < R, and diverges when |x| > R (and this is true even
for x ∈ C!).
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– One can see (for example using the comparison test against a geometric series) that the radius
of convergence of the series exp(x) =

∑∞
n=0

xn

n! is ∞. (This series should look familiar: it is
the Taylor series of the exponential function; but now, we are using this series to define the
exponential function!).

– Moreover, one can show that any power series function f(x) =
∑∞

n=0 anx
n is differentiable

within its radius of convergence and its derivative is given term-by-term: f ′(x) =
∑∞

n=0 nanx
n−1.

– It follows that exp′(x) = exp(x), and we clearly have exp(0) = 1, so this proves the existence
of a solution to the IVP defining ex.

• Note that the addition law ea+b = ea · eb follows from the characterization of ex as the unique
solution to y′ = y; y(0) = 1.

– Indeed, if we set y(x) = ea+x/ea, then y′ = y (by the chain rule) and y(0) = ea/ea = 1, and
hence y(x) = ex, i.e., ea+x = ea · ex.

– In particular, this also gives 1 = ea−a = ea · e−a and hence e−a = 1/ea.
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13 Mar 10, 11.2A: Complex solutions

13.1 More on complex exponentials

• Last time, we defined the exponential function as ez =
∑∞

n=0
zn

n! .

• A consequence of this is that we can immediately make sense of ez for complex values z ∈ C, simply
by plugging z into the power series.

– In particular, for x ∈ R, we find that

eix = 1 + ix− x2

2
− i

x3

3!
+
x4

4!
+ · · ·

=

∞∑
n=0

(−1)n
x2n

2n!
+ i

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!

– We recognize the two terms appearing as the Taylor series for cos and sin.
– As with the exponential function, let us define cos and sin to be given by these two power

series.

• It follows immediately from this definition that sin′ = cos and cos′ = − sin.

– Soon, we will see that there are in fact unique functions satisfying the initial value problems
y′′ = −y; y(0) = 0; y′(0) = 1 and y′′ = −y; y(0) = 1; y′(0) = 0, respectively. Hence, as with
the exponential function, we get a nice condition characterizing cos and sin uniquely, and the
above series prove the existence of functions satisfying these conditions.

– It is also not too hard to show from these definitions that cos2+sin2 = 1 and that they agree
with the geometric definition of the trigonometric functions, i.e., that p = (cos(θ), sin(θ)) ∈ R2

is the point on the unit circle such that the arc-length from (1, 0) is p, measured counter-
clockwise, is θ.

• This way of defining ex, cos, and sin immediately gives rise to the famous Euler’s formula:

eix = cosx+ i sinx.

– This gives a concise way to express points in the plane using polar coordinates: the point with
radius r and angle θ is reiθ.

∗ As usual with radial coordinates, the angle is not uniquely determined: we always have
reiθ = rei(θ+2π) (and conversely, if r1eiθ1 = r2e

iθ2 , then r1 = r2 and θ1 − θ2 ∈ 2πZ – the
one exception being that 0eiθ = 0 for any θ)

Some properties of the complex exponential

• A variant (using a bit of complex analysis) of the argument given above to deduce the exponential
law ea+b = ea · eb for a, b ∈ R proves that this holds as well for a, b ∈ C.

– From this, we can deduce the addition laws for sin and cos:

cos(a+ b) + i sin(a+ b) = ei(a+b) = eiaeib

= (cos a+ i sin a)(cos b+ i sin b)

= (cos a cos b− sin a sin b) + i(sin a cos b+ cos a sin b)

hence by comparing real and imaginary parts, we get cos(a + b) = cos a cos b − sin a sin b and
sin(a+ b) = sin a cos b+ cos a sin b.
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– This also makes complex numbers easy to multiply when written in polar coordinates: (r1eiθ1)(r2eiθ2) =
(r1r2)e

i(θ1+θ2).

– In particular, this allows us to easily find square roots (and more generally n-th roots): if
z = reiθ, then its square roots – i.e., the numbers w ∈ C such that w2 = z – are just
w = ±

√
reiθ/2.

∗ Indeed, we see that these are square roots, and given any other square root w, we have
w2 − z = (w −

√
reiθ/2)(w +

√
reiθ/2), and hence w = ±

√
reiθ/2.

∗ (Regarding the ambiguity of θ: had we written z = reiθ+2pi, we would have gotten the
same square roots w = ±

√
reiθ/2+π = ∓

√
reiθ/2.

– In particular, if z is a negative real number, then z = reiπ, and we have the familiar imaginary
square root

√
z = ±

√
reiπ/2 = ±i

√
r.

• Next, recall that the derivative of a function f : R → C = R2 is defined component-wise: if f(x) =
u(x) + iv(x), then f ′(x) = u′(x) + iv′(x).

– It follows that
d
dxe

ix = cos′ x+ i sin′ x = − sinx+ i cosx = ieix

– Hence, the anti-derivative
∫
eix dx of eix (the unique-up-to-a-constant function f : R → C

whose derivative is eix) is 1
i e

ix+C = −ieix+C, where C ∈ C is an arbitrary complex constant.

– More generally, using that ea+ib = ea · eib, we have that d
dxe

(a+ib)x + (a + ib)e(a+ib)x and∫
e(a+ib)x dx = 1

a+ibe
(a+ib)x + C.

13.2 11.2A: Complex solutions

Example 11.2.1

• Now consider a general homogeneous second order linear equation Ly = (D2 + aD + b)y = 0, with
its characteristic equation r2 + ar + b = 0.

– We are perhaps still mainly interested in solutions y : R → R, but now we can also try to
find all solutions y : R → C; and in this case, we can also consider equations with coefficients
a, b ∈ C.

• We now factor this polynomial as (r − r1)(r − r2), with roots −a ± 1
2

√
a2 − 4b (where this square

root is now possibly complex).

• We can thus factor the differential operator as L = (D − r1)(D − r2).

– We will see that the above exponential multiplier method still works becauseD(erxy) = erx(D+
r)y as before, even for r ∈ C.

• As a first example, consider y′′ + y = 0, i.e., (D2 + 1)y = 0, i.e., (D − i)(D + i)y = 0.

– We would like to conclude from this that (D + i)y = c1e
ix for some c1 ∈ C.

– That is, we would like to say that u = Ceix is the general solution u : R → C to the differential
equation u′ = iu.

– Indeed, the usual method works: given any solution u, we have d
dx(ue

−ix) = u′e−ix−iue−ix = 0,
hence ue−ix = C for some constant C ∈ C, and hence u = Ceix.

• It now remains to solve y′ + iy = c1e
ix, and for this, we again use exponential multipliers.
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– This equation is equivalent to eix(y′ + iy) = c1e
2ix (because we can multiply e−ix to go back!),

or in other words d
dx(ye

ix) = c1e
2ix.

∗ Note that this use of the product rule is legitimate: it is just the ordinary product rule
applied to each of the two components of the function R → C given by x 7→ y(x)eix.

– This is equivalent to yeix = 1
2c1e

2ix + c2 for some c2 ∈ C and hence to

y = c1e
ix + c2e

−ix

for some c1, c2 ∈ C; thus, this is the general solution.

• We can rewrite this as

y = c1(cosx+ i sinx) + c2(cosx− i sinx)

= (c1 + c2) cosx+ (c1 − c2)i sinx

= d1 cosx+ d2 sinx,

where we have set d1 = c1 + c2 and d2 = i(c1 − c2).

– Since we can solve for c1 and c2 in terms of d1 and d2, this formula also expresses the general
solution.

– It is the general solution we might have expected for y′′ = −y, except that now d1 and d2 may
be complex.

– The general real solution is obtained by restricting to the case d1, d2 ∈ R.

Theorem 11.2.3

• The above example shows how the proof of Theorem 11.1.1 above can be adapted to the complex
context, to yield the following statement:

• Given any a, b ∈ C, the differential equation y′′ + ay′ + by = 0 has the general solution y : R → C
given by {

y = c1e
r1x + c2e

r2x, r1 ̸= r2

y = c1xe
r1x + c2e

r2x, r1 = r2,

with c1, c2 ∈ C, where r1, r2 ∈ C are the roots of r2 + ar + b = 0.

• In the case where a, b ∈ R and a2 − 4b < 0, so that r1 = α+ iβ and r2 = α− iβ for some α, β ∈ R,
the general solution can also be written

y = c1e
αx cosβx+ c2e

αx sinβx,

where c1, c2 ∈ C. In this case the real solutions y : R → R are precisely those with c1, c2 ∈ R.

• Moreover, the initial conditions y(x0) = y0 and y′(x0) = z0, for any x0 ∈ R and y0, z0 ∈ C can
always be satisfied by a unique choice of c1 and c2.

Example 11.2.2

• A generalization of the equation y′′+y = 0 from Example 11.2.1 is the equation y′′+ω2y = 0, where
ω ∈ R− {0}; this is called the harmonic oscillator equation with angular frequency ω.

• This has characteristic equation r2 + ω2 = 0 with roots r = ±iω, and hence general solution

y = c1e
iωx + c2e

−iωx = d1 cosωx+ d2 sinωx.

• Such functions are called harmonic oscillators, and arise frequently in physics.
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Example 11.2.3

• We summarize the form of the general solution to y′′ + ay′ + by = 0 with a, b ∈ R.

• This has characteristic equation r2 + ar + b = with roots r1, r2 = −a/2±
√
a2 − 4b/2.

• We now consider three cases, based on the sign of the discriminant a2 − 4b:

• If a2 − 4b > 0, then r1, r2 are real and distinct, and the general solution is y = c1e
r1x + c2e

r2x with
c1, c2 ∈ R.

• If a2 − 4b < 0, then r1, r2 are imaginary and distinct, and the general solution is y = c1e
αx cosβx+

c2e
αx sinβx with c1, c2 ∈ R, where α = −a/2, and β =

√
a2 − 4b/2.

• If a2−4b = 0 represents the dividing line between the above oscillatory and non-oscillatory behaviour;
the general solution is y = c1xe

r1x + c2e
r2x.
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14 Mar 24, 11.2B: Higher-order equations

14.1 11.2B: Higher-order equations

Theorem 11.2.4

• The same idea that went in to solving linear homogeneous second order equations with constant
coefficients also allows us to solve such equations of arbitrary order.

• Thus, given any a0, . . . , an−1 ∈ C, we consider the differential equation

Ly = y(n) + an−1y
(n−1) + · · ·+ a1y

′ + a0 = 0,

which has a characteristic equation

rn + an−1r
n−1 + · · ·+ a1r + a0 = 0

with (by the fundamental theorem of algebra!) n roots (possibly with repetitions) r1, . . . , rn, so that

rn + an−1r
n−1 + · · ·+ a1r + a0 = (r − r1)(r − r2) · · · (r − rn)

and hence
L = (D − r1)(D − r2) · · · (D − rn).

• Warning: recall that, for n ≥ 5, there is no general formula for finding the roots of a degree n
polynomial (and even for n = 3 and n = 4, the formulas are quite complicated), so the theorem we
are about to state gives us the solutions to this differential equation, but only if we are able to find
the roots of the characteristic equation.

– (As an aside, if you do not know how to prove the fundamental theorem of algebra, you should
be curious as to how it’s proven!)

• The resulting theorem statement is then: if the roots rk are all distinct, then the equation Ly = 0
has the general solution y : R → C given by

y = c1e
r1x + · · ·+ cne

rnx

with c1, · · · , cn ∈ C.

– If there are repetitions among the roots, so that, say {r1, . . . , rn} = {s1, . . . , sm}, with sk
appearing dk times, then the general solution is

y =
m∑
k=1

dk−1∑
j=0

ck,jx
jeskx,

with ck,j ∈ C for 1 ≤ k ≤ m and 0 ≤ j < dk. (Note that this actually includes the previous
case, which arises when dk = 1 for all k, so that sk = rk).

– Moreover, for any y0, . . . , yn−1 ∈ C and x0 ∈ R, there are unique values of c1, . . . , cn (or
of ck,j for 1 ≤ k ≤ m and 0 ≤ j < dk) so that y satisfies the initial conditions y(x0) =
y0; . . . ; y

(n−1)(x0) = yn−1.

• To prove this theorem, we must (i) verify that the y given above is indeed a solution, (ii) prove
that it is the general solution, i.e., that every solution has this form, and (iii) verify the claim
about initial conditions. Step (i) is fairly straightforward. As indicated above, step (ii) proceeds by
induction, with each induction step consisting in solving a first-order (possibly non-homogeneous)
linear equation. Step (iii) involves, as in the second-order case, checking that a certain matrix has
non-zero determinant.
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• To verify that y as above is a solution, it suffices by linearity of L to show that xjeskx is a solution
for each 1 ≤ k ≤ m and 0 ≤ j < dk.

– The relevant general fact is that (D − r)b(xaerx) = 0 whenever 0 ≤ a < b, which we prove by
induction on b.

∗ The base case b = 1 we already know.
∗ For the induction step, assume b > 0 and that the claim is already known for b− 1.
∗ We then have (D − r)b(xaerx) = (D − r)b−1(D − r)(xaerx).
∗ If a = 0, then (D − r)(xaerx) = 0, and we are done.
∗ If a > 0, then

(D − r)(xaerx) = (axa−1erx + rxaerx)− r(xaerx) = axa−1erx,

and so since a− 1 ≤ b− 1, we are done by the induction hypothesis.
– Now to show that L(xjeskx) = 0 for 0 < j < dk, we use that the (D − sk) all commute with

each other to write L as a product L̃(D− sk)
dk (where L̃ is the product of all the (D− sk′)

dk′

for k ̸= k′).
∗ We then have L(xjeskx) = L̃(D − sk)

dk(xjeskx) = 0.

• Let us now prove by induction that y as given above is the general solution.

– As a base case, we can take the case n = 2, which we already know (or alternatively, we can
take the trivial case n = 0, so that the equation is y = 0, with unique solution y = 0).

– For the induction step, assume that n > 0 and that the theorem holds for equations of degree
n− 1.

– Now let y be a solution, so that Ly = 0.
– We set u = (D − rn)y, so that we can write the equation as

(D − r1)(D − r2) · · · (D − rn−1)u = 0.

– By the induction hypothesis, we thus have that u is a linear combination

(D − rn)y =

m−1∑
k=1

dk−1∑
j=0

ck,jx
jeskx

for some ck,j ∈ C if rn /∈ {r1, . . . , rn−1} and

(D − rn)y =
m−1∑
k=1

dk−1∑
j=0

ck,jx
jeskx +

dm−2∑
j=0

cm,jx
jesmx

if rn ∈ {r1, . . . , rn−1} (and where rn = sm).
– Using the usual exponential multiplier, these are equivalent to

d

dx
(e−rnxy) =

m−1∑
k=1

dk−1∑
j=0

ck,jx
je(sk−rn)x

and
d

dx
(e−rnxy) =

m−1∑
k=1

dk−1∑
j=0

ck,jx
je(sk−rn)x +

dm−2∑
j=0

cm,jx
j ,

respectively.
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– Using that for any integer N and R ∈ C,
∫
xNeRx dx is (a constant plus) a linear combination

of xMeRx for 0 ≤M ≤ N (as one verifies by induction using integration by parts), we conclude
that e−rnxy is,

∗ in the first case, a constant cn plus linear combination of xje(sk−rn)x for 1 ≤ k ≤ m − 1
and 0 ≤ j ≤ dk − 1

∗ in the second case, a constant cn plus a linear combination of xje(sk−rn)x for 1 ≤ k ≤ m−1
and 0 ≤ j ≤ dk − 1, plus a linear combination of xj+1 for 0 ≤ j ≤ dm − 2.

– We thus conclude, as desired, that y is:

∗ in the first case, a linear combination of ernx = esmx and of xjesk for 1 ≤ k ≤ m − 1 and
0 ≤ j ≤ dk − 1

∗ in the second case, a linear combination of xjesk for 1 ≤ k ≤ m and 0 ≤ j ≤ dk − 1.

• Finally, let us see that for each y0, . . . , yn−1 ∈ C and x0 ∈ R, there are unique coefficients in the
general solution for which y satisfies the initial conditions y(x0) = y0; . . . ; y

(n−1)(x0) = yn−1.

– It is helpful first to reduce to the case x0 = 0.

∗ Thus, for any y : R → C, consider the function z(x) = y(x−x0); we have z(l)(x) = y(l)(x0)
for all l and hence (because of homogeneity!) z we have Lz = 0 if and only if Ly = 0.

∗ The assignment y 7→ z is clearly a bijection (with inverse taking z to the functions y defined
by y(x) = z(x+ x0)).

∗ Hence, given any y0, . . . , yn−1, we obtain a bijection between solutions z satisfying z(0) =
y0, . . . , z

(n−1)(0) = yn−1 and solutions y satisfying y(x0) = y0, . . . , y
(n−1)(x0) = yn−1.

∗ Thus, if there is a unique such solution z, there is a unique such solution y.

– Next, let’s first consider the case in which all the roots ri are distinct.

∗ If y =
∑n

k=1 cke
rkx is the general solution, we then have y(l) =

∑n
k=1 ckr

l
ke

rkx and hence
y(l)(0) =

∑n
k=1 ckr

l
k for all l.

∗ The initial conditions thus give a system of linear equations

yl =

n∑
k=1

rlkck

for l = 0, . . . , n− 1 in the variables c1, . . . , cn.
∗ We want to show that this has a unique solution for any y0, . . . , yn−1; in other words, we

are asking about the invertibility of the matrix (rlk)1≤k≤n,0≤l≤n−1 (assuming the rk are
distinct!).

∗ This is one of the world’s most famous matrices, and is called the Vandermonde matrix,
after a 18th century French mathematician.

∗ In fact, it is known to have determinant
∏

1≤j<k≤n(xk − xj), which is thus non-zero since
the xi are distinct; however, we can also see the invertibility directly, by showing that it
represents an invertible linear map.

∗ Namely, we consider the linear map f : C[x]x<n → Cn given by f(p) = (p(x1), . . . , p(xn));
with respect to the standard (monomial) basis of C[x]x<n and the standard basis of Cn,
this is indeed represented by the Vandermonde matrix (or perhaps by its transpose).

∗ Now for p to be in the kernel of this map means that the degree < n polynomial p has n
distinct roots x1, . . . , xn; but by the fundamental theorem of algebra, this can only happen
if p = 0. Hence f has trivial kernel (and is hence invertible by the rank-nullity theorem).

– Finally, we consider the general case (where there may be multiple roots).
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∗ As a first lemma, we need to know the derivatives of y(x) = xjerx for r ∈ C and N ≥ 0.
· More generally, we consider f(x) = g(x)h(x) for any two functions f and g.
· It’s then easy to see by induction that f (l)(x) =

∑l
m=0

(
l
m

)
g(m)(x)h(l−m)(x).

· Applying this with f(x) = g(x)h(x) = xjerx we have that g(m)(0) = δjmj! and
h(m−j)(0) = rm−jer0 = rm−j , and hence

f (l)(0) =

l∑
m=0

(
l

m

)
δjmj!r

m−j =

{(
l
j

)
j!rl−j = l!

(l−j)!r
l−j j ≤ l

0 j > l

∗ Thus, taking y =
∑m

k=1

∑dk−1
j=0 ck,jx

jeskx as above, we conclude that

y(l) =
m∑
k=1

max(dk−1,l)∑
j=0

ck,j
l!

(l − j)!
sl−j
k .

· As before, we want to consider this as a linear combination of the ck,j . If we just look
at the coefficients of ck,j for a fixed value of k, we obtain the following sequence – let
us call it C l

k:

C l
k =

( l!

(l − 0)!
slk,

l!

(l − 1)!
sl−1
k , . . . ,

l!

0!
s0k, 0, . . . 0

)
.

· If we consider the coefficients of all of the ck,j , we thus obtain the concatenation of
these sequence C l

1 . . . C
l
m.

· Hence, finally, the matrix A corresponding to the system of equations yl = y(l)(0) (with
l = 0, . . . , n− 1), which we have to show is invertible, looks as follows:

A =

 C0
1 C0

2 · · · C0
m

...
Cn−1
1 Cn−1

2 · · · Cn−1
m

 ,
where it is to be remembered that each C l

k is itself a sequence of entries (arranged
horizontally).

∗ We now claim again that the resulting matrix A (or rather its transpose) represents an
invertible linear map C[x]<n → Cn.

· Namely, we consider the map f : C[x]<n → Cn defined by

f(p) = (p(s1), p
′(s1), . . . , p

d1−1(s1), · · · , p(sm), p′(sm), . . . , pdm−1(sm)).

· We see that if we let p be the l-th basis element xl of the standard monomial basis of
C[x]<n, then the sequence (p(sk), p

′(sk), . . . , p
d1−1(sk)) is precisely the above sequence

C l
k. Hence, the vector f(p) ∈ Cn is exactly the l-th row of the matrix A, so that A⊤

represents f as claimed.
· It remains to see that f is an invertible linear transformation; again, it suffices to show

that it has a trivial kernel.
· But if f(p) = 0, that means precisely that the polynomial p vanishes at each sk with

multiplicity dk. (This is a general fact: a polynomial q of order m has a root of
multiplicity d ≤ m at r if and only if q(r) = · · · = q(d−1)(r) = 0.) Since

∑m
k=1 dk = n,

this means that the degree < n polynomial p has n roots, counted with multiplicity,
hence must be 0.

48



· Let us prove the parenthetical general fact. Note that “q has a root of multiplicity d at
r” means precisely that (x− r)d is a factor of q(x), i.e., q(x) = (x− r)dqd(x) for some
polynomial qd.

· The proof is by induction on d. The base case d = 1 is the familiar fact that q(r) = 0
if and only if (x − r) is a factor of q, and we omit the proof (which uses polynomial
division).

· For the induction step, suppose d > 1, and write q(x) = (x−r)q1(x). We wish to show
that q(r) = q′(r) = · · · = q(d)(r) = 0 if and only if (x − r)d divides q(x), i.e., if and
only if (x− r)d−1 divides q1.

· Now it is easy to show by induction on l that ql(x) = lq
(l−1)
1 (x)+(x−r)ql1(x) for l > 0.

· It follows that ql(a) = 0 if and only if ql−1
1 (a) = 0 for all l > 0.

· Hence q′(r) = · · · = q(d)(r) = 0 if and only if q1(r) = · · · = q
(d−1)
1 (r) = 0, which by the

induction hypothesis is equivalent to (x− r)d−1 dividing q1(x), as desired.

Example 11.2.5

• Let’s solve y′′′ − 4y′′ + 4y′ = 0.

• The characteristic equation is 0 = r3 − 4r2 + 4r = r(r− 2)2, with a single root r1 = 0 and a double
root r2 = 2.

• Thus the general solution is y = c1 + c2e
2x + c3xe

2x.

Example 11.2.6

• We can use Theorem 11.2.4 in reverse, starting with solutions and arriving at a differential equation
that has those solutions.

• Thus, a constant-coefficient linear equation Ly = 0 of least order having ex, e2x, and e−2x as solutions
is given by L = (D − 1)(D − 2)(D + 2).
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15 Mar 26, 11.2C: Independent solutions

15.1 11.2C: Independent solutions

Theorem 11.2.5

• We now describe the solutions to higher order homogeneous linear equations with real (constant)
coefficients.

• The important fact here is that the roots of a real polynomial p(r) = rn+ an−1r
n−1+ · · ·+ a1r+ a0

are all real or come in complex-conjugate pairs α± iβ.

– The reason is that, since the coefficients are real (and since conjugation preserves addition and
multiplication), we have p(z) = p(z̄) and hence p(z) = 0 ⇒ p(z̄) = 0̄ = 0.

– Hence, we can write the roots as s1, . . . , sm, α1±iβ1, . . . , αM±iβM with multiplicities d1, . . . , dm, e1, . . . , eM ,
so that

∑m
k=1 dk + 2

∑M
k=1 ek = n.

• The theorem statement is now: given an equation Ly = 0 with characteristic equation p(r) with
roots sk and αk ± iβk as above, the general solution is a linear combination

m∑
k=1

dk∑
j=1

ck,jx
jeskx +

M∑
k=1

ek∑
j=1

(uk,jx
jeαKx cosβx+ vk,jx

jeαkx sinβx)

of the functions xjeskx, xjeαkx cosβx, and xjeαkx sinβx.

– In the case where all the roots are distinct, this simplifies to

m∑
k=1

cke
skx +

M∑
k=1

(uke
αKx cosβx+ vke

αkx sinβx)

• As before, this is simply proven by expanding e(α±iβ)x as eαx(cosβx± i sinβx) for each such term
appearing in the first form of the general solution.

• More specifically, the general complex y : R → C solution is such a linear combination with ck,j , uk,j , vk,j ∈
C, and the general real solution y : R → R is such a linear combination with ck,j , uk,j , vk,j ∈ R.

– In one direction, it is clear that if the coefficients are all real, then y is real.

– In the other direction, given any (possibly complex) coefficients, if y(x) ∈ R for all x, then
(y(x) + y(x)) = 0 for all x.

– The function z(x) = y(x) + y(x) is a linear combination of the same functions eskx and so on,
with coefficients ck,j + c̄k,j , uk,j + ūk,j , and vk,j + v̄k,j .

– Since z = 0, we have in particular that z(x0) = z′(x0) = · · · = z(n−1)(x0) = 0 for any x0 ∈ R;
and we obviously have Lz = 0.

– Hence, by the uniqueness of the coefficients satisfying given initial conditions, we conclude
that ck,j + c̄k,j , uk,j + ūk,j , and vk,j + v̄k,j are all 0, and hence that ck,j , uk,j , vk,j are all real,
as desired.
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Corollary 11.2.6

• The argument we just gave to prove that the real solutions are exactly those with real coefficients
has another nice application: it allows us to prove that the functions xjeskx in the general solution
to Ly = 0 are linearly independent (when considered as elements in the vector space RR – or
equivalently, in one of its subspaces such as C0(R) or C∞(R)).

– Similarly, the functions xjeskx, xjeαkx cosβkx, and xjeαkx sinβkx are all linearly independent.

• Indeed, if we have some linear combination y =
∑m

k=1

∑dk−1
j=0 ck,jx

jeskx which is equal to 0, then
it satisfies the initial conditions y(x0) = y′(x0) = · · · = y(n−1)(x0) = 0, and hence we must have
ck,j = 0 for all k, j by the uniqueness of coefficients acidifying given initial conditions.

• Thus, we may say that these functions form a basis of the space of solutions to the equation Ly = 0
(or in other words, of kerL).

Example 11.2.7

• The equation y(4) − y = 0 has characteristic equation r4 − 1 = 0, with roots 1,−1, i,−i.

• Thus, the general solution is a linear combination of e±1 and e±i, or equivalently, of e±1, sinx, and
cosx.

• Suppose we impose the initial conditions y(0) = 0, y′(0) = 1, y′′(0) = 2, y′′′(0) = 1.

– Considering the general solution

y = c1e
x + c2e

−x + c3 cosx+ c4 sinx,

the initial conditions give the equations

c1 + c2 + c3 = 0

c1 − c2 + c4 = 1

c1 + c2 − c3 = 2

c1 − c2 − c4 = 1

– We know on principle that the matrix of coefficients of this linear system is invertible, but in
this case, it is easy to straightforwardly solve the system.

– The result is c1 = 1, c2 = 0 c3 = −1, and c4 = 0; thus the unique solution to this IVP is
ex − cosx.
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16 Mar 31, 11.3: Nonhomogeneous equations

16.1 11.3A: Superposition

• We now consider non-homogeneous linear equations Ly = f , where L is a linear operator L =
Dn + an−1D

n−1 + · · ·+ a1D + a0 as before and f is a function.

– Of course, the homogeneous equations are just the special case when f = 0.

Theorem 11.3.1

• There is a basic relationship between homogeneous and non-homogeneous equations, which is very
general, and which we know from linear algebra:

– Given any linear function f : V → W between vector spaces V and W , we can consider the
equation f(x) = w for some fixed w ∈W .

– Given any particular solution vp (so that f(vp) = w, and any v0 ∈ ker f (i.e., a solution
to the homogeneous equation f(x) = 0), we have by linearity that f(vp + v0) = f(vp) = w,
so vp + v0 is also a solution.

– Conversely, given any other solution v (so that f(v) = w), if we set v0 = v − vp, then we
have (again by linearity) f(v0) = f(v)− f(vp) = w−w = 0, so v0 ∈ ker f and v = vp + v0.

– The conclusion is that the set of solutions to f(x) = w is precisely

{vp + v0 | v0 ∈ ker f}.

• In particular, we may apply this to the linear operator L, which is a linear map L : C∞(R) → C∞(R).

– The conclusion is that given any particular solution yp to the inhomogeneous equation Ly = f ,
the general solution will be given by y = yp + yh, where yh is an arbitrary solution to the
associated homogeneous equation Ly = 0.

Example 11.3.1

• Consider y′′ + 2y′ + y = e3x.

• The characteristic polynomial is (r + 1)2, with the double root r1 = r2 = −1.

• Thus, we know the general solution to the homogeneous equation is yh = c1e
−x + c2xe

−x.

– Thus, if we can find a particular solution yp to the inhomogeneous equation, we will obtain
the general solution as y = yp + yh = yp + c1e

−x + c2xe
−x.

• Moreover, we can obtain a particular solution by our usual method of iteratively solving (inhomo-
geneous) first-order equations.

– Writing (D + 1)2yp = e3x and setting u = (D + 1)yp, we have u′ + u = (D + 1)u = e3x.

– Introducing the usual exponential multiplier, this is equivalent to D(exu) = e4x, hence we may
take exu = 1

4e
4x (we may ignore the integration constant because we are just looking for one

solution), and hence u = 1
4e

3x.
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– We thus have y′p + yp = (D + 1)yp = 1
4e

3x.

– Proceeding exactly as before, we conclude that we may take yp = 1
16e

3x.

• We conclude that the general solution is

y =
1

16
e3x + c1e

−x + c2xe
−x.

– (Note that we could also have arrived at this directly – instead of using the general fact that
the general solution is a particular solution plus a homogeneous solution – if in the above
derivation, we had kept track of the constants of integration.)

Example 11.3.2 (“superposition principle”)

• Suppose we have an inhomogeneous equation Ly = f , and we are able to write f in the form
f = a1f1 + a2f2.

– If we want to find a particular solution, it suffices by the linearity of L to find y1, y2 with
Ly1 = f1 and Ly2 = f2, for then setting yp = a1y1 + a2y2, we have Lyp = a1Ly1 + a2Ly2 =
a1f1 + a2f2.

– This (as well as other related phenomena) is sometimes called the superposition principle,
because yp is a “superposition” of y1 and y2.

• For example, suppose we want to solve y′′ + 2y′ + y = e3x + 1.

– We already saw that y1 = 1
16e

3x is a solution to y′′ + 2y′ + y = e3x.

– So using the superposition principle, it remains to find a particular solution to y′′+2y′+y = 1.

– We can do this using exponential multipliers as before – or maybe we’ll get lucky and notice
that there is an obvious solution y2 = 1.

– Hence yp = y1 + y2 = 1
16e

3x + 1 is a particular solution to the equation, and thus y =
1
16e

3x + 1 + c1e
−x + c2xe

−x is the general solution.

• Similarly, suppose we wanted to solve y′′ + 2y′ + y = e3x + e−x.

– Again, we only need to find a particular solution y2 to y′′ + 2y′ + y = e−x.

– This time, there is not such an obvious solution, but if we use exponential multipliers again,
we find that y2 = 1

2x
2e−x is a solution.

– Hence, the general solution to the equation is y = 1
16e

3x + 1
2x

2e−x + c1e
−x + c2xe

−x.

16.2 11.3B: Undetermined coefficients

• In the previous example, in one case we had to carry out the somewhat laborious exponential
multiplier method to find a special solution, and in the other case, we got lucky and were able to
guess one. We now introduce a method which would have given us a shortcut in both cases.

• The important circumstance is that in both cases, the inhomogeneous term f in Ly = f (namely 1
and e−x, respectively) was itself the solution to some homogeneous equation My = 0 (namely with
M = D and M = D + 1, respectively).
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• It follows that M(L(y)) =M(f) = 0.

• But now ML is itself some linear differential operator, and thus we know how find the general
solution to this homogeneous equation.

• Thus the sought-after particular solution yp to our original equation is some solution to this homo-
geneous equation MLy = 0, and it just remains to determine the coefficients in the general solution
that we need to choose.

• In general, this method, where a solution to a problem is first established as a certain linear com-
bination, the coefficients of which are then determined, is called the method of undetermined
coefficients.

Example 11.3.1 again

• We again seek a solution yp to (D + 1)2y = e−x.

– Since e−x satisfies (D + 1)e−x = 0, we see that yp must satisfy (D + 1)3yp = 0, and hence be
of the form yp = c1e

−x + c2xe
−x + c3x

2e−x.

– Moreover, we see that the first two terms are actually solutions to the homogeneous equation
(D + 1)2y = 0, so we may omit them without changing whether yp is a particular solution.

– Plugging the remaining term yp = c3x
2e−x into the original equation, we obtain

e−x = yp + 2y′p + y′′p = c3(x
2 + 2(2x− x2) + (2− 4x+ x2))e−x = 2c3e

−x

and hence c3 = 1/2.

• Similarly, if we seek a solution yp to (D+1)2y = 1, we see that it must be a solution to D(D+1)2y =
0, and hence be of the form yp = c1 + c2e

−x + c3xe
−x.

– Again, we can ignore the last two terms since they are solutions to the homogeneous equation.

– We are left with yp = c1.

– We now plug this into the original equation and obtain

1 = yp + 2y′p + y′′p = c1.

• Note in both of these cases the substantial simplification resulting from throwing away the terms
which are solutions to the associated homogeneous equation. Without this simplification, this
method wouldn’t really be more efficient than just solving the equation directly using exponen-
tial multipliers.
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17 Apr 2, 11.3C: Variation of parameters

17.1 11.3C: Variation of parameters

• We next discuss variation of parameters, a further method for finding a particular solution to a
non-homogeneous equation, which has the advantage of also working for equations with non-constant
coefficients.

• This method relies on the following Ansatz : given a non-homogeneous equation Ly = y′′ + a(x)y′ +
b(x)y = f(x), and supposing we have solutions y1, y2 to the associated homogeneous equation
Ly = 0, we look for a particular solution to the non-homogeneous equation of the form yp(x) =
u1(x)y1(x) + u2(x)y2(x) for some functions u1(x), u2(x).

– (The name comes from the fact that the coefficients, or parameters, in the linear combination
of y1 and y2 are allowed to depend on x, that is, to vary.)

– If we plug yp into the original equation and rearrange the terms, we obtain

f = (y′′1 + ay′1 + by1)u1 + (y′′2 + ay′2 + by2)u2

+ (y1u
′
1 + y2u

′
2)

′ + a(y1u
′
1 + y2u

′
2)

+ (y′1u
′
1 + y′2u

′
2)

– Here, the first line vanishes since y1, y2 are assumed to be solutions to the homogeneous
equation; the second line will vanish if we assume y1u′1 + y2u

′
2 = 0; and hence the equation

will be satisfied as soon as f = y′1u
′
1 + y′2u

′
2.

• This gives us a pair of linear equations in u′1 and u′2 (with non-constant coefficients!)

0 = y1u
′
1 + y2u

′
2

f = y′1u
′
1 + y′2u

′
2

– This will have a unique solution as long as the determinant y1(x)y′2(x)−y2(x)y′1(x) is non-zero
(for all x!); this is called the Wronskian determinant of y1 and y2, and is denoted w(x).

∗ (This has a superficial similarity to the Vandermonde determinant – though I don’t know
what the significance of this is.)

– (In fact, we will always have w(x) ̸= 0 as long as y1 and y2 are linearly independent solutions;
in the case of constant-coefficients, this follows from the uniqueness of solutions with given
initial conditions. It is also true with non-constant coefficients, and follows from the uniqueness
theorem for higher-order differential equations, which we have not discussed yet.)

– This shows that the variation of parameters Ansatz will work. Before proceeding further with
the general method, let us work out a couple of examples of variation of parameters by hand.

Example 11.3.6

• We return to y′′ + 2y′ + y = e−x, where we previously used undetermined coefficients, and again
seek a particular solution yp.

• We now use that y1 = e−x is a homogeneous solution, and make the Ansatz yp(x) = u1(x)e
−x.

(According to the general method, we should also have a term with xe−x, but this can be omitted,
since any multiple of xe−x is also a multiple of e−x.)
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• We have y′p = (u′1 − u1)e
−x and y′′p = (u′′1 − 2u′1 + u1)e

−x, and hence plugging yp into the original
equation yields

e−x = (u′′1 − 2u′1 + u1)e
−x + 2(u′1 − u1)e

−x + u1e
−x = u′′1e

−x.

• This will be satisfied if u′′1 = 1, hence we may take u1 = 1
2x

2, and hence yp = 1
2x

2e−x, which is the
same as we got before.

Example 11.3.7

• We consider Ly = x2y′′ − 2xy′ + 2y = x4.

• In the textbook, we are simply told that the associated homogeneous equation has solutions y1(x) =
x and y2(x) = x2, as one can easily check.

– To actually arrive at this conclusion, the associated homogeneous equation can be solved by
cleverly factoring the operator L = (x2D2− 2xD+2) (note that this is now a non-trivial task
because of the non-constant coefficients!).

– Let us write L = (xD − r1)(xD − r2).

– We must proceed with caution, and note that for a function r(x), we have Dr = r′ + rD,
because (Dr)y = D(ry) = r′y + ry′ = (r′ + rD)y.

– Thus, carefully multiplying out the above expression for L, we obtain L = x2D2 + (x− xr1 −
xr2)D + r1r2.

– We thus have the equations x − xr1 − xr2 = −2x, and r1r2 = 2, with solution r1 = 1 and
r2 = 2, and thus L = (xD − 1)(xD − 2).

– We have reduced the problem of solving Ly = 0 to that of solving two first-order linear
equations, and when we solve theses, we find we indeed get y(x) = c1x + c2x

2 as the general
solution.

∗ (Though we note that this is still a bit tricky since the operators xD− 1 and xD− 2 are
not in “normalized form” D + g(x).)

• We thus make the Ansatz yp = u1y1 + u2y2 = u1x+ u2x
2.

– And in fact, as in previous last example, we see that the second term is redundant, so we may
make the more specific Ansatz yp = u1x.

– Thus, y′p = u′x+ u and y′′p = u′′x+ 2u′

– Plugging this into the original equation yields

x4 = x2(u′′x+ 2u′)− 2x(u′x+ u) + 2ux = u′′x3.

– Thus, we see that it suffices that u satisfy u′′ = 1, and hence we can take u = 1
6x

3.

• We thus have the particular solution yp = 1
6x

4, hence the general solution is y = 1
6x

4 + c1x+ c2x
2,

with c1 and c2 constants.
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11.3D: Green’s functions

• In the previous example, it just so happened we were able to get away with just using one of the two
independent solutions y1, y2 to the homogeneous equation Ly = 0 associated to Ly = y′′+ay′+by =
f ; but in general, we need both.

• As we said above, seeking a particular solution of the form yp = u1y1 + u2y2, we arrive at the
equations:

0 = y1u
′
1 + y2u

′
2

f = y′1u
′
1 + y′2u

′
2.

– (Note that in order to arrive at these equations, we needed to start with an equation in
normalized form y′′ + ay′ + by = 0, unlike in the previous example.)

• We can solve these equations explicitly by inverting the relevant 2× 2-matrix. Recalling the Wron-
skian determinant w = y1y

′
2 − y2y

′
1, the result is:

u′1(x) =
−y2(x)f(x)

w(x)
u′2(x) =

y1(x)f(x)

w(x)
.

• Integrating, we thus obtain

yp(x) = y1(x)u1(x) + y2(x)u2(x) = y1(x)

∫
−y2(x)f(x)

w(x)
dx+ y2(x)

∫
y1(x)f(x)

w(x)
dx.

• The solution to the original normalized equation is then

y(x) = c1y1(x) + c2y2(x) + yp(x)

with yp as above and with c1, c2 constants.

– It is nice to see that we can write out the solution explicitly like this, but it may be simpler
just to remember the system of equations in u′1 and u′2 and start from there.

• If we fix x0 ∈ R, we can choose specific anti-derivatives in the expression for yp above and obtain

yp(x) =

∫ x

x0

y1(t)y2(x)− y2(t)y1(x)

w(t)
f(t) dt.

– Moreover, we see that this particular yp(x) is a solution (in fact, the unique solution, but we
haven’t proven this yet) to the initial value problem Ly = f ; y(x0) = y′(x0) = 0.

– The function G(x, t) = y1(t)y2(x)−y2(t)y1(x)
w(t) is called the Green’s function associated to the

differential operator L.

– Thus, to summarize, for any function f , integrating f against the Green’s function y(x) =∫ x
x0
G(x, t)f(t) dt produces a solution to the IVP Ly = f ; y(x0) = y′(x0) = 0.
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Example 11.3.8-9

• We consider Ly = x2y′′ − 2xy′ + 2y = x3.

– This is the same L we studied before, but now we put it in normalized form y′′− 2
xy

′+ 2
x2 y = x;

since now we have x in a denominator, let us seek solutions y : (0,∞) → R or (0,∞) → C.

– More generally, let us solve y′′ − 2
xy

′ + 2
x2 y = f for an arbitrary f .

• Referring to example 11.3.7, the solutions to the associated homogeneous equation are x and x2.

– (In fact, this example is actually a bit silly, since, as we mentioned there, we will never need
the second function x2. Thus, one could just start with the Ansatz y(x) = xu(x) and plug
this into the equation as we did before. Nonetheless, we will use this example to demonstrate
the general approach using both u1 and u2.)

• We thus seek a particular solution of the form yp(x) = xu1(x) + x2u2(x) (and will then have the
general solution y = yp(x) + c1x+ c2x

2).

– Let us do this in three (more or less equivalent) ways, just to summarize the above discussion.

• First way: we set up the equations for u′1 and u′2:

xu′1 + x2u′2 = 0

u′1 + 2xu′2 = f

– Subtracting the first equation from x times the second, we obtain x2u′2 = fx, and inserting
this into the first equation gives xu′1 = −fx.

– We thus have u1(x) = −
∫
f(x) dx and u2(x) =

∫ f(x)
x dx.

– We conclude that we have a particular solution

yp(x) = −x
∫
f(x) dx+ x2

∫
f(x)

x
dx

– For example when f(x) = x as above, we obtain

yp(x) = −1

2
x3 + x3 =

1

2
x3.

• Second way: we compute the Wronskian

w(x) = y1y
′
2 − y2y

′
1 = 2x2 − x2 = x2.

– We now use the explicit formulas above for u1 and u2:

u1(x) =

∫
−y2(x)f(x)

w(x)
dx =

∫
−x
x2
f(x) dx = −

∫
f(x) dx

and
u2(x) =

∫
y1(x)f(x)

w(x)
dx =

∫
x

x2
f(x) dx =

∫
f(x)

x
dx,

which of course gives the same answers.
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• Third way: we compute the Green’s function of L

G(x, t) =
y1(t)y2(x)− y2(t)y1(x)

w(t)
=
tx2 − t2x

t2
=
x2

t
− x.

– We then obtain a particular solution yp with initial conditions yp(0) = y′p(0) = 0 by integrating
against the Green’s function:

yp(x) =

∫ x

0
G(x, t)f(t) dt =

∫ x

0

(x2
t

− x
)
f(t) dt,

which is again the same answer we got before (though written slightly differently).

Higher-order equation

• The method of variation of parameters also works for higher-order linear equations. We comment
on it very briefly here.

• Given an n-th order linear equation Ly = f (with possibly non-constant coefficients), we first find
n solutions y1, . . . , yn to the homogeneous equation.

• We then make the ansatz y = u1y1 + · · ·+ unyn for some undetermined functions u1(x), . . . , un(x).

• Plugging this into Ly = f and making a similar (but more complicated) computation to before, we
end up with a sufficient condition for y to be a solution, namely that the functions u′1, . . . , u′n satisfy
the linear system of equations (with non-constant coefficients)

A(x)U(x) = b(x),

where U is the column vector (u′1, . . . , u′n), b is the column vector (0, . . . , 0, f), and A is the matrix
with entries Aij = y

(i)
j .

• When n = 2, this specializes to the system that we saw before.

• The determinant w(x) of A(x) is again called the Wronskian of the functions y1, . . . , yn, and we again
have that it is non-zero for all x if the yi are independent solutions to the homogeneous equation.

• Hence, we can solve invert A and solve the system for the u′i, and hence again we can conclude that
this Ansatz will produce a solution.

59



18 Apr 7, 11.5: Laplace transforms

18.1 11.5: Laplace transforms

• Given a function f : [0,∞) → R, its Laplace transform is the function L[f ] defined by

L[f ](s) =
∫ ∞

0
e−stf(t) dt

assuming this integral converges – otherwise the Laplace transform of f does not exist.

– In general, the function L[f ](s) is not defined for all values of s but only for s sufficiently large
(as we’ll soon see).

– We recall that, in general, an improper integral
∫∞
a F (x) dx is defined as the limit (if it exists)

limT→∞
∫ T
a F (x) dx.

– Note that we can also define the Laplace transform for a function f : R → R, but from the
definition, it is clear that it only depends on the restriction of f to [0,∞).

– In applications, one often says that the Laplace transform transforms a function “on the time
domain” to one “on the frequency domain”. This is because, if t has units of time, then s has
units of inverse time, i.e., frequency, in order for the argument −st of the exponential function
to be dimensionless.

• Important example: for a ∈ R, we have

L[eat](s) =
∫ ∞

0
e−steat dt = lim

T→∞

∫ T

0
e(s−a)t dt = lim

T→∞

[
− e(s−a)t

s− a

]T
t=0

=
1

s− a
.

– We see here that the last limit converges only when s > a, and hence L[eat] is defined only on
(s,∞).

Key properties of the Laplace transform

• There are a couple of important properties that make the Laplace transform useful for solving
differential equations.

• The first is that L behaves well with respect to derivatives. Namely, we have the formula:

L[f ′](s) = −f(0) + sL[f ](s)

– For this formula to hold, f has to satisfy two conditions:

∗ (i) The Laplace transforms L[f ] and L[f ′] must exist (of course)
∗ (ii) We must have limt→∞ e−stf(t) = 0 for all (sufficiently large) s. (This is saying that
f “does not grow too fast”.)

– The proof is a straightforward computation using integration by parts:

L[f ′](s) = lim
T→∞

∫ T

0
e−stf ′(t) dt

= lim
T→∞

[
e−stf(t)

]T
t=0

+ s

∫ T

0
e−stf(t) dt

= −f(0) + sL[f ](s),

where in the last line we used assumption (ii).
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• The second is that L is linear : L[c1f1 + c2f2] = c1L[f1] + c2L[f2] – this is immediate from the
definition.

– (Though we note that it is a bit awkward to formulate L as a linear map between two specific
vector spaces, since its codomain is something like “the set of functions defined on (a,∞) or
[a,∞) for some a ∈ [−∞,∞)”.)

• The third, very important property, is called Lerch’s theorem: it says that if L[f ] = L[g], then
f = g.

– It’s important to note that, if f and g are functions defined on all R, then the conclusion of
this theorem can nonetheless only be that f and g agree when restricted to [0,∞), since we
can arbitrarily modify f and g on (−∞, 0) without changing their Laplace transforms.

– This theorem more or less amounts to the existence of an inverse Laplace transform L−1, with
L−1[L[f ]] = f . In the above example, for instance, we would have L−1[ 1

s−a ](t) = eat.

– We will not prove Lerch’s theorem. But we note that the nicest proof involves some auxiliary
concepts, and we will comment more on them below.

Example 11.5.1

• Let’s see how to put the above properties together to help us solve a differential equation; we start
with a simple example – in fact, too simple to really show the usefulness of the methods, but it still
illustrates the general idea.

• We seek a solution y : R → R to the IVP

y′ + 2y = 0; y(0) = 3

• Applying L to both sides of the equation and using linearity and L[y′] = −y(0) + L[y], we obtain

−3 + sL[y](s) + 2L[y](s) = 0.

• Hence, solving for L[y], we obtain L[y] = 3
s+2 .

• We thus see that L[y] = L[3e−2t] and hence, by the existence of L−1, that y(t) = 3e−2t.

• Warning: note that we can actually only conclude from this that y(t) = 3e−2t for t ≥ 0!

– Of course, we can easily check that this is in fact a solution for all t – though if we want to
say that it’s the unique solution, we can a priori only say this for t ≥ 0.

– However, it follows from the uniqueness theorem for first order ODEs that y is the unique
solution on all of R.

– We will be able to draw a similar conclusion when applying the Laplace transform to higher-
order equations using the uniqueness theorem for higher-order equations (which so far we have
only stated in the case of linear equations with constant-coefficients).
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Further remarks on the Laplace transform

• The Laplace transform is used heavily in electrical engineering, specifically control theory and signal
processing.

• In those contexts, the restriction to functions [0,∞) → R often arises naturally (for example, when
considering a signal f(t) that only begins at time t = 0.

• It is possible, and sometimes necessary, to consider the Laplace transform L[f ](s)
∫∞
0 e−stf(t) dt as

a function of a complex variable s ∈ C. It follows from certain theorems of complex analysis that
the values of L[f ](s) with s ∈ C are completely determined by the restriction of L[f ] to s ∈ R.

• Another generalization which is important in applications is to consider L[f ] not just for functions
f but for Schwartz distributions such as the Dirac delta function δ.

– This is a “function” with the property that
∫∞
−∞ δ(x)f(x) dx = f(0) for any (reasonable)

function f , and in particular
∫∞
−∞ δ(x) dx = 1.

– Thus δ(x) is “completely concentrated” at the point x = 0 but has “total mass” 1.

– This arises for example in signal processing in the analysis of discrete, rather than continuous,
signals.

– Similarly, for any a ∈ R, there is a shifted delta function δ(x− a) with
∫∞
−∞ δ(x− a)f(x) dx.

– It follows for a ≥ 0 that L[δ(t− a)](s) = e−as.

• The Laplace transform is closely related to the Fourier transform F [f ](s) =
∫∞
−∞ e−2πistf(t) dt,

which is also used in a wide variety of applications, and is notably of central importance in quantum
mechanics, and which has similar nice properties which make it useful in the study of differential
equations.

• An explicit formula for the inverse Laplace transform L−1[F ] (when it exists) is given by

L−1[F ](t) = eat
∫ ∞

−∞
F (a+ 2πis)e2πits ds.

for an appropriate value of the constant a ∈ R.

– As you can see, this makes use of values of the Laplace transform F = L[f ] as a function of a
complex variable.

– This is most easily proven using related properties of the Fourier transform.

Example 11.5.2

• The same approach as used above works for higher-order equations.

• The key fact is that

L[y′′](s) = −y′(0) + sL[y′](s) = −y′(0)− sy(s) + s2L[y](s)

and similarly (by induction)

L[y(n)](s) = snL[y](s)−
n−1∑
k=0

sn−k−1y(k)(0).
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– To use this, we need the same assumptions as above, which now say (i) all of the Laplace
transforms L[y(k)] exist for k = 0, . . . , n and (ii) limt→∞ e−sty(k)(t) for all (sufficiently large)
s and all k = 0, . . . , n− 1.

• Let’s consider the IVP
y′′ − y′ − 2y = 3et; y(0) = 1; y′(0) = 0.

– Setting Y = L[y] and applying L to both sides, we obtain

3

s− 1
= (−y′(0)− sy(0) + s2Y )− (−y(0) + sY )− 2Y

= (s2 − s− 2)Y − (s− 1).

– Solving for Y , we have

Y =
s2 − 2s+ 4

(s− 1)(s2 − s− 2)
.

– It remains to find the inverse Laplace transform of Y , for which it useful to first find a partial
fraction decomposition: set

Y =
A

s− 1
+

B

s+ 1
+

C

s− 2
.

– We find A by multiplying both sides by s−1 and setting s = 1, and we find B and C similarly.

– This gives A = −3
2 , B = 7

6 , C = 4
3 and hence

Y (s) =
−3/2

s− 1
+

7/6

s+ 1
+

4/3

s− 2
.

– Applying the inverse Fourier transform, we thus have

y(t) = −3

2
et +

7

6
e−t +

4

3
e2t.

– Again, this holds a priori only for t ≥ 0, but by the uniqueness theorem for second
order ODEs (which we actually have in this case, since this is a linear equation with constant
coefficients), it follows that it holds for all t.

Tables of Laplace transforms

• We now have a feeling for the general method: apply the Laplace transform to both sides of a
differential equation in y to turn it into an algebraic equation in Y = L[y], and then solve for Y .

• Then, after possibly rewriting Y as a linear combination of simpler functions (e.g., by partial fraction
decomposition), find the inverse Laplace transform of Y (by finding it for each of the simpler pieces).

• This last step can be facilitated by consulting some big table of known Laplace transforms; one such
table is provided in the textbook, in Table 111.1 on p. 545.

• There are also various other properties of the Laplace transform and inverse Laplace transform which
makes them easier to compute.

– Prominent among these (and discussed in section 11.6 in the book) is that (under certain
assumptions) the Laplace transform turns convolution into multiplication:

L[f ∗ g](s) = L[f ](s) · [g](s).
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– Here, the convolution of two functions f, g : [0,∞) → R is defined by

(f ∗ g)(t) =
∫ t

0
f(u)g(t− u) du.
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19 Apr 9, 12.1: Vector fields

19.1 12.1A: Geometric interpretation

• We now begin our study of systems of differential equations.

• In general, such systems will have several unknowns, each of which is a function which together with
its derivatives appears in the given equations.

• We will now change our notation and systematically use t rather than x for the variable with respect
to which derivatives our taken.

– This is so that we can use x(t) and y(t) for the unknowns in a given system. As is common
when considering functions of time, we will also begin to use Newton’s notation ẋ(t) and ẏ(t)
for differentiation, rather than Lagrange’s notation x′(t) and y′(t) as we have been doing.
Thus, a typical first-order system of two equations in the unknowns x(t) and y(t) would look
like

ẋ(t) = F (t, x, y)

ẏ(t) = G(t, x, y)

– We write ẍ for the second derivative, but still write x(n) for higher derivatives.

Example 12.1.1

• Consider the system

ẋ = x

ẏ = 2y

• We seek a solution (x, y) with x, y : R → R

• This is the simplest kind of system, since each unknown occurs in just one equation (and each
equation contains a single unknown). such a system is called uncoupled.

• We thus solve it by solving each equation separately; so here, the general solution is (x, y) where
x(t) = c1e

t and y(t) = c2e
2t.

The geometric interpretation

• As usual, it is convenient to use vector notation when dealing with several variables.

• Thus, in the above example, we combine x and y into a function x : R → R2 given by x(t) =
(x(t), y(t)). The system then becomes the single vector equation

ẋ(t) = F (x(t), y(t)).

where F : R2 → R2 is the function F (x, y) = (x, 2y).

• To give a coupled example, the system

ẋ = x+ y + t

ẏ = x− y − t

corresponds to the single equation
ẋ = F (t, x, y)

where F (t, x, y) = (x+ y + t, x− y − t).
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• Note that a solution to such an equation is a plane curve, i.e., a function x : R → R2; for a system
in n unknowns, it would be a curve in Rn.

– Such a curve in general is called a trajectory of the system.

– As we saw, for the example considered above, the trajectories are exactly the curves of the
form (x, y) = (c1e

t, c2e
2t).

– If we fix an initial condition, say (x(0), y(0)) = (1, 2), then this isolates a particular trajectory
(x, y) = (et, 2e2t).

– Note that this trajectory is entirely inside the first quadrant, and as t → −∞, it approaches
the origin, and it is in fact just the right (open) half of the parabola y = 2x2.

• We can make a sketch of several trajectories with varying initial conditions c1 and c2 to get a feel
for the general solution of the equation; such a picture is called a phase portrait.

– (Note however, that the phase portrait is incomplete in an important sense: the trajectories
are parametrized curves, having a definite velocity at each point, which is not captured in the
phase portrait.)

– In this case, there are three types of curves in the phase portrait: there are half-parabolas in
each quadrant, all converging to 0 as t → −∞; there are the positive and negative x and y
axes; and finally, when c1 = c2 = 0, there is simply the constant solution (x(t), y(t)) = (0, 0).
This last type of solution is called an equilibrium solution, and we say that the origin is an
equilibrium point of this system.

General definition of a system of equations

• We can give a formal definition of a system of ordinary differential equation by repeating the defi-
nition of a single differential equation, simply replacing everything with vectors.

• Recall that we formally defined an ordinary differential equation of order m simply to be a function
F : R× Rm → R (or maybe F : U → R for some U ⊂ Rm+1), which we think of as representing the
equation

x(m)(t) = F (t, x(t), ẋ(t), . . . , x(m−1)(t)).

• Thus, in just the same way, we can formally define an m-th order system of differential equations in
n variables to be given by an arbitrary function F : R× (Rn)m → Rn (or more generally F : U → Rn

for some U ⊂ R× (Rn)m), which we think of as representing the equation

x(m)(t) = F (t,x(t), ẋ(t), . . . ,x(m−1)(t)).

• A solution to this differential equation on an interval I ⊂ R then is a n-times differentiable function
x : I → Rn satisfying

x(m)(t) = F (t,x(t), ẋ(t), . . . ,x(m−1)(t))

for all t ∈ I (where, in the more general situation involving a set U , we must also require that
(t,x(t), ẋ(t), . . . ,x(m−1)(t)) ∈ U for all t ∈ I).
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• Writing x(t) = (x1(t), . . . , xm(t)) and similarly writing F1, . . . , Fn for the components of F , this
corresponds to n equations

x
(m)
1 (t) = F1(t,x(t), ẋ(t), . . . ,x

(m−1)(t))

...

x(m)
n (t) = Fn(t,x(t), ẋ(t), . . . ,x

(m−1)(t))

• Thus, for instance, if we consider a second-order system in three unknowns, we can write x(t) =
(x(t), y(t), z(t)) and

F (t,x, ẋ) = (F1(t, x, y, z, ẋ, ẏ, ż), F2(t, x, y, z, ẋ, ẏ, ż), F3(t, x, y, z, ẋ, ẏ, ż))

and the equation ẍ = F (t,x(t), ẋ(t)) then corresponds to the system

ẍ = F1(t, x, y, z, ẋ, ẏ, ż)

ÿ = F2(t, x, y, z, ẋ, ẏ, ż)

z̈ = F3(t, x, y, z, ẋ, ẏ, ż)

19.2 12.1B: Autonomous systems

• We now consider a first order equation ẋ = F (t,x).

• Recall that, geometrically, the vector ẋ(t) is the velocity vector of the curve x, and is a vector
tangent to curve x at the point x(t). (For this reason, the velocity vector is also called a tangent
vector, though it’s to be remembered that the velocity vector also contains the information of the
speed (which could be 0!), and not just the direction).

• Thus, we see that the equation is simply specifying what the velocity vector of a trajectory should
be at each point.

• In other words, the function F : R×Rn → Rn defining a first-order equation is simply a vector field,
and a solution is simply a parametrized curve whose velocity vector is always the one specified by
the vector field (such a curve is sometimes called an integral curve or flow line of the vector
field). It should be noted that if F (t,x) really depends on t, that this is a time-varying vector field.

• A (possibly higher order) system of ODEs which does not depend on time is called autonomous.

Example 12.1.2

• An example of an autonomous system is (ẋ, ẏ) = (−y, x).

ẋ = −y
ẏ = x

• The resulting vector field is depicted in Figure 12.4 (b).

• It strongly suggests that the trajectories of the system are circles around the origin.

• In fact, a naive approach to solving this system suggests itself: substitute one equation in the other.

– This gives ẍ = −x, which we know has (among others) solutions x = r cos t.

– Substituting this in the second equation gives ẏ = x = r cos t, which has a solution y = r sin t.

– We see the circles (x, y) = (r cos t, r sin t) are indeed trajectories of the system.

• We will see soon more systematic methods for solving this system.
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Another example

• As we noted when discussing slope fields, they are related to, but not the same as vector fields, and
one should make the distinction clear to oneself.

• However, the two concepts can be related as follows.

• Given a first-order equation ẏ = f(t, y), one can define the system

ẋ = 1

ẏ = f(x, y).

• In other words, this is the vector field F (x, y) = (1, f(x, y)).

• Because all of the vectors have x-coordinate 1, they are determined by their slope f(x, y), and so
this essentially amounts to a slope field.

• Moreover, the trajectories of this system are precisely the graphs of the solutions the original equa-
tion.

Example 12.1.3

• Here is an example of a time-dependent vector field (hence of a non-autonomous system):

(ẋ, ẏ) =
(
(1− t)x− ty, tx+ (1− t)y

)
.

• At t = 1, this is precisely the vector field we considered before.

– But for instance at t = 0, it is radially outward.

– There are some sketches in Figure 12.5.

• It is much less straightforward to solve this system.

Example 12.1.4

• Suppose that in (ẋ, ẏ) = (F (t, x, y), G(t, x, y)), the functions F and G are independent of t, or more
generally that R ..= F/G is (non-zero and) independent of t.

• Suppose moreover that we have a trajectory (x(t), y(t)) such that y is a function of x, so that
y(t) = f(x(t)) (by the implicit function theorem, this will happen on some interval (t0 − ε, t0 + ε)
for any t0 with ẋ(t0) ̸= 0).

• Then by the chain rule, we have

dy

dx
=

dy/dt

dx/ dt
=
F

G
= R(x, y).

• This can give us some information about the (unparametrized) trajectory curves.

• For instance, if (F,G) = (ty,−tx), we obtain R = −x/y, and hence

dy

dx
=

−x
y
.

• By separation of variables, we find that x2 + y2 = c for some c ∈ R.

• So we see that any part of a trajectory away from the x-axis and with non-zero velocity in the x
direction must lie on some fixed circle.
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20 Apr 14, 12.1C: higher-order systems

20.1 12.1C: Second-Order equations

• We now introduce an important trick which shows that – surprisingly – a higher-order system of
ODEs can always be reduced to a first-order system.

• The price to pay is that the number of equations increases; in particular, if you start with a single
n-th order equation, you end up with a system of n linear equations.

• We first consider the second-order case, so we have an equation

ÿ = f(t, y, ẏ).

– Now introduce a new function z(t) = ẏ(t). We see that the pair (y, z) satisfies the first-order
system

ẏ = z

ż = f(t, y, z).

– Conversely, given any solution (y, z) to this system, we y will be a solution to the original
equation; hence we see that the original equation and the new system of equations are equiv-
alent.

• We can also carry over initial conditions: the IVP

ÿ = f(t, y, ẏ); y(t0) = y0, ẏ(t0) = z0

corresponds to the system
ẏ = z y(t0) = y0

ż = f(t, y, z) z(t0) = z0.

• As an example, consider the harmonic oscillator ẍ+ x = 0.

– This turns into the system

ẋ = y

ẏ = −x

we saw above.

– As we saw above, the solutions to this system are circular trajectories. But now we view
them with a new perspective: they are simultaneously plotting the position and velocity of a
harmonic oscillator.

• It’s clear how to generalize this to higher orders: the equation

y(n) = f(t, y, · · · , y(n−1))

is transformed into the system

ẋ0 = x1

ẋ1 = x2
...

ẋn−2 = xn−1

ẋn−1 = f(t, x0, . . . , xn−1)
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– Then y is a solution to the original equation if and only if y, ẏ, . . . , y(n−1) is a solution to the
new system.

– It is also clear how to transform an initial value problem, and also how to transform a higher-
order system with possibly many equations.

• It is very good to know theoretically that every system is equivalent to a first-order system; though
when trying to solve or analyze a particular higher-order system, it may or may not be helpful to
convert it into a first-order one.

A note on “characteristic equations”

• A couple of people in class have asked what if any connection there is between the “characteristic
polynomial” of a linear differential operator, and the characteristic polynomial of a matrix from
linear algebra

• We will discuss the characteristic polynomial soon: it is a degree n polynomial pA(x) associated to
any square matrix A ∈ Kn×n.

• We can see one connection by applying the above procedure to turn a single n-th order linear ODE
into a system of n first-order linear ODEs.

• Namely, any such system (say, with constant coefficients) has the form ẋ = Ax+b, with A ∈ Kn×n

and b ∈ Kn, and, we can thus consider the characteristic polynomial A, which is a

– Soon, we will have much more to say about studying a system of linear ODEs in terms of the
matrix A and its characteristic polynomial.

• Now if you apply this construction to a linear ODE ẋ(n) + an−1x
(n−1) + · · · + a1ẋ + a0x = 0 with

characteristic polynomial p(r), you end up with the matrix

A =



0 1 0 · · · 0
0 1 0 · · · 0

...
. . . . . . . . .

...
0 1 0

0 · · · 0 1
−a0 −a1 · · · −an−1


.

• This is precisely the so-called companion matrix of the polynomial p, and it is easy to see check by
induction (once one has the definition of the characteristic polynomial) that it’s character polynomial
is p.

• Thus, we see that the characteristic polynomial of a higher-order linear equation is just the charac-
teristic polynomial of the matrix representing the corresponding first-order system of equations.

Existence and uniqueness theorem

• We now state the general existence and uniqueness theorem for higher-order equations and systems
of equations.

– Or rather, we will only state a theorem about first-order systems of equations, but by the
above trick, this immediate implies a corresponding theorem about higher-order equations
and systems!
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• The theorem statement is a direct generalization of the theorem we saw for a single first-order
equation:

• Theorem: Suppose F : U → Rn is continuous, where U = I1 × V ⊂ R×Rn for some open interval
I1 and some open set V ⊂ Rn. Suppose that the derivative Fx(t,x) with respect to x (i.e., the
Jacobian matrix (∂Fi

∂xj
)(t,x)) exists and is continuous.

– Then for any (t0,x0) ∈ U , the IVP ẋ = F (t,x); x(t0) = x0 has a solution defined on some
interval I ⊂ I1, and this solution is unique in the sense that for any two solutions x1 : I → R
and x2 : I

′ → R, we have x1(t) = x2(t) for t ∈ I ∩ I ′.

– If moreover V = R and there is some B > 0 such that all of the entries of Fx(t,x) are bounded
by B for all (t,x) ∈ U , then the solution will exist on the entire interval I1.

• Not only is the statement the same as in the one-dimensional version of the theorem, the proof
(which we only sketched) is the same as well.

– That is, one again converts the differential equation into an integral equation x(t) = x0 +∫ t
t0
F (t,x(t)) dt.

– Then one defines a solution again as the limit of the Picard iteration of this integral, and by
the same arguments (which are non-trivial and which I didn’t say anything about), one shows
that this limit exists and is a solution.

• Warning: one must be careful to interpret the uniqueness in the case of non-autonomous system.

– For an autonomous system, the uniqueness theorem essentially says that, for a given vector
field (satisfying the assumptions of the theorem), any two trajectories passing through the
same point must agree.

– In particular, if a trajectory x(t) satisfies x(t0) = x(t1) for some t0 < t1, then we must have
x(t0 + t) = x(t1 + t), hence x(t) = x(t + t1 − t0) for all t, i.e., x is a periodic trajectory with
period t1 − t0.

– However, in a non-autonomous system, the uniqueness theorem only says two trajectories
passing through the same point at the same time must agree.

– In particular, a trajectory can cross itself at different times without being periodic.

20.2 A bit of 13.1 before turning to 3.6: eigenvalues and eigenvectors

• We now turn to the study of first-order homogeneous constant-coefficient systems of ODEs.

• These are precisely systems of the form
ẋ = Ax

for some A ∈ Kn×n.

• As in the one-dimensional situation, the study of these will be important also for the non-homogeneous
and non-constant coefficients cases.

• Now, in the 1-dimensional case, this equation is very simple: it is just

ẋ = ax

with some a ∈ R, with general solution x = ueat for some constant u ∈ R.
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• Later, we will see that, amazingly, this generalizes quite directly: there is a notion of matrix expo-
nential eA, and we will find solutions of the form eAtu.

• For now, inspired by the 1-dimensional case, let us simply seek solutions of the form x(t) = eλtu for
some λ ∈ K and some non-zero u ∈ Kn (by which we mean Kn×1 – we will be using this shorthand
frequently in what follows).

• We then have ẋ = λeλtu.

• Thus, this is a solution if and only if A(eλtu) = λeλtu which, because u is non-zero, is equivalent to

Au = λu.

• Definition: given A ∈ Kn×n, a non-zero vector u ∈ Kn is called an eigenvector of A with eigenvalue
λ if Au = λu. We say that λ ∈ K is an eigenvalue of A if A has some eigenvector with eigenvalue
λ.

– (The prefix “eigen” in German means “proper” or “characteristic”.)

– Geometrically, this means that the linear transformationA, though it may be quite complicated
in general, acts on vectors in the direction of u simply by scaling it by λ. (Note that if u is
an eigenvector with eigenvalue λ, so is any non-zero scalar multiple of u.)

– The reason we exclude the zero vector u = 0 is that it satisfies Au = λu for every λ. Hence,
if we allowed it, every number would be an eigenvalue of A.

– Note that if A is a real matrix, it might still have complex eigenvalues, in the sense that it has

these eigenvalues when regarded as a complex matrix. An example is A =

[
0 −1
1 0

]
which has

eigenvectors
[
1
±i

]
with eigenvalues ∓i.

• Thus, we see that x = eλtu is a solution if and only if u is an eigenvector of A with eigenvalue λ.

• We thus next turn to the general study of eigenvectors and eigenvalues.
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21 Apr 16, 3.6: Eigenvalues and eigenvectors

21.1 3.6A: Definition and examples, and 3.6B: Bases of eigenvectors

• Above, we defined the eigenvectors and eigenvalues of a matrix A ∈ Kn×n.

• More generally, suppose L ∈ L(V ) is any operator on a K-vector space V .

– We say that a non-zero vector v ∈ V is an eigenvector of L with eigenvalue λ (and that λ is
an eigenvalue of L) if Lv = λv.

– If V ∈ Kn, then we can consider L as a matrix in Kn×n, and this definition then agrees with
the previous one.

– More generally, if V is finite-dimensional, and we consider the matrix [L]B representing L
with respect to any ordered basis B, and writing [v]B for the coordinate vector of v ∈ V with
respect to B, we have [Lv]B = [L]B[v]B and hence Lv = λv if and only if [L]B[v]B = λ[v]B
(since [λv]B = λ[v]B).

– It follows that v is an eigenvector of V with eigenvalue λ if and only if its coordinate vector
[v]B is an eigenvector of [L]B with respect to λ, and in particular that λ is an eigenvalue of L
if and only if it is an eigenvalue of [L]B.

Example 3.6.4

• The differentiation operator D ∈ L(C∞(R)) has eigenvectors erx with eigenvalue r.

Bases of eigenvectors

• Let L ∈ L(V ) be a linear operator, and suppose v1, . . . ,vk are eigenvectors with eigenvalues
λ1, . . . , λk, so that L(vj) = λjvj for all j.

– Then it is easy to compute the action of L on any linear combination of the vj ’s.

– Indeed, if v = c1v1 + · · · ckvk, we have by linearity:

L(v) = c1Lv1 + · · · ckLvk = c1λ1v1 + · · ·+ ckλkvk.

• In particular, if the vj ’s form a basis of V , then we can express any vector v as a linear combination
of the vj ’s and thence easily compute Lv.

• This is most neatly expressed by saying that if B = (v1, . . . ,vn) is an ordered basis of eigenvectors
with eigenvalues λ1, . . . , λn, then the matrix [L]B of L with respect to B is diagonal :

[L]B =


λ1 0 · · · 0
0 λ2 0
...

. . .
...

0 0 · · · λn

 .
– Indeed, this follows immediately since the j-th column of L is

[L]Bej = [L]B[vj ]B = [Lvj ]B = λj [vj ]B = λjej .

– We express this by saying that the operator L is diagonalizable.
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– Conversely, if [L]B is diagonal, then ej is an eigenvector with eigenvalue λj for each j, hence
vj is as well, and so B is a basis of eigenvectors with eigenvalues λ1, . . . , λn.

– Thus, diagonalizability of L is exactly the condition that V have a basis of eigenvectors of L;
this is Theorem 3.6.5.

• Geometrically, the diagonalizability of L means that there exists a coordinate system of V such that
L simply scales the vectors on each coordinate axis (possibly by different amounts).

Example 3.6.1 and 3.6.2

• Consider the matrix A =

[
1 1
4 1

]
.

• This has a basis of eigenvectors (1, 2) and (1,−2) with eigenvalues 3 and −1, respectively.

• In Figure 3.10, there is a depiction of the action of A on vectors in the plane.

6C: Change of basis matrices

• Given a matrix A ∈ Kn×n such that Kn has an ordered basis B of eigenvectors of A, we have the
associated diagonal matrix D = [A]B.

– We now ask: what is the relationship between A and D?

– The answer is that they are conjugate; in general, two square matrices X and Y are conjugate
if Y = UXU−1 for some invertible matrix U .

• To see this, we consider a related question, given two ordered bases B and B′ of a finite-dimensional
vector space V , and a linear operator L ∈ L(V ), what is the relationship between the matrices [L]B
and [L]B′?

– (A similar question could be asked – and would receive a similar answer – about an arbitrary
linear map f : V → W between finite-dimensional vector spaces, and given bases B,B′ of V
and C, C′ of W .)

• Using the relationship between linear maps and matrix multiplication, we proceed by writing L =
idV ◦ L ◦ idV , and concluding that [L]B′ = [idV ]BB′ [L]B[idV ]B′B.

– Note that since [idV ]BB′ [idV ]B′B = [idV ]B = I, it follows that [idV ]B′B = [idV ]
−1
BB′ , and hence

that [L]B′ is a conjugate of B.

– Here, the matrix [idV ]BB′ is called a change-of-bases matrix. Its i-th column is the coordinate
vector with respect to B′ of the i-th basis vector in B.

• Returning to the case of a matrix A, we have that A = [A]E , where E = (e1, . . . , en) is the standard
basis.

– It follows that for any basis B, we have [A]B = [id]−1
BEA[id]BE . (This, together with the next

statement, is Theorem 3.6.8.

– Here, the matrix [id]BE is particular simple: its columns are simply the elements of the basis
B (each of which is an element of Kn, which we consider as a column vector).
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– Conversely, we see that for any matrix U , we have that U−1AU is equal to [A]B for some basis
B, namely the one whose elements are the columns of U .

• In conclusion, to say that a matrix A is diagonalizable is to say that A = UDU−1 for some diagonal
matrix D and some invertible matrix U (whose columns are then a basis of eigenvectors of A).

Example 3.6.14

• Considering the above example A =

[
1 1
4 1

]
with eigenbasis (1, 2) and (1,−2) with eigenvalues 3

and −1, we conclude that

A = U

[
3 0
0 −1

]
U−1

where U =

[
1 1
2 −2

]
and hence U−1 = 1

−4

[
−2 −1
−2 1

]
=

[
1/2 1/4
1/2 −1/4

]
.

Finding eigenvalues, and review of determinants

• Let us see how to find the eigenvalues of a matrix A.

• The equation Av = λv expressing that v ̸= 0 is an eigenvector of A with eigenvalue λ can be
rewritten as (λI−A)v = 0, i.e., v ∈ ker(λI−A).

• Thus, we see that λ is an eigenvalue of A if and only λI − A has a non-trivial kernel or,
what amounts to the same thing, if and only if λI −A is not invertible.

• Now, we recall that a criterion for invertibility of a matrix is the non-vanishing of its determinant.
Let us recall the definition of the determinant.

• The nicest way to introduce the determinant is by first describing a simple property which determines
it uniquely.

– Given K-vector spaces V1, . . . , Vn,W , we call a map F : V1 × · · · × Vn →W multilinear if it is
linear in each argument, when all of the other arguments are held fixed.

– That is,
F (au1 + bw1,v2, . . . ,vn) = aF (u1,v2, . . . ,vn) + bF (w1,v2, . . . ,vn)

and
F (v1, au2 + bw2, . . . ,vn) = aF (v1,u2, . . . ,vn) + bF (v1,w2, . . . ,vn)

and so on.

– Next, in the case when all the Vi are the same vector space V , so that F : V n → W , we say
that F is alternating if it changes sign whenever two of its arguments are swapped.

– That is,

F (v1, . . . ,vn) = −F (v1, . . . , vi−1,vj ,vi+1, . . . ,vj−1,vi,vj+1, . . . ,vn).

– Now any (n × n)-matrix can be considered as a sequence of n column vectors. Hence any
function F : Kn×n → K can be regarded as a function (Kn)n → K, and thus we can talk
about F being multilinear or alternating.
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– The determinant det : Kn×n is then the unique alternating multilinear function satis-
fying det I = 1.

• To see why there can be at most one such function det, let A be a matrix with columns v1, . . . ,vn.

– We then have vj =
∑n

i=1Aijej for each j.

– Using the multilinearity of A, it follows that

detA = det(v1, . . . , vn) =
n∑

i1,...,in=1

Ai1,1 · · ·Ain,n det(ei1 , . . . , ein).

– Now, it follows immediately from the alternating property of det that detB = 0 whenever a
matrix B has two identical columns.

– Hence, in the above sum, all the terms vanish except those in which the ij are all distinct, and
hence in which (i1, . . . , in) = (σ(1), . . . , σ(n)) for some bijection σ : {1, . . . , n} → {1, . . . , n}.
Such a bijection is also known as a permutation, and the set of permutations is denoted Σn.

– The sign sgn(σ) of a permutation σ ∈ Σn is given by sgn(σ) = (−1)N , where N is the number
of pairs of elements of {1, . . . , n} that get swapped by σ: N = #{(i, j) | i < j ∧ σ(i) > σ(j)}.

– Now, it is easy to see that any permutation is a composite of transpositions, meaning permu-
tations which exchange two elements and leave all the others in place. One can then check by
induction that the sign of a permutation σ ∈ Σn is exactly the number of transpositions in
any representation of σ as a composite of transpositions; i.e., if σ = τN ◦ · · · ◦ τ1 with each τi
a transposition, then sgn(σ) = N .

– It follows that any alternating function F satisfies F (uσ1, . . . ,uσn) = (−1)sgnσF (u1, . . . ,un)
for any permutation σ.

– Now we return to the formula for detA, which as we said can be written

detA =
n∑

σ∈Σn

Aσ1,1 · · ·Aσn,n det(eσ1, . . . , eσn)

which by the last observation is equal to

n∑
σ∈Σn

(−1)sgnσAσ1,1 · · ·Aσn,n det(e1, . . . , en)

which, using that det I = 1 is equal to

n∑
σ∈Σn

(−1)sgnσAσ1,1 · · ·Aσn,n.

• We conclude that any alternating multilinear function det with det I = 1 must be given by this
explicit formula, which shows that there can be at most one such function.

• Moreover, if we define det by the above formula, then one can check that it does indeed satisfied
the required properties, and we thus conclude not only the uniqueness, but the existence of the
determinant.
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• In the case of (2× 2) or (3× 3)-matrices, the above of course recovers the familiar formulas for the
determinant.

• If we look at the last stage of the proof, we see we get a slightly more general statement: any function
F : Kn×n → K which is alternating and multilinear must be given by F (A) = F (I) · det(A).
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22 Apr 21, More 3.6: Eigenvalues and eigenvectors

22.1 More 3.6B: Bases of eigenvectors

Properties of the determinant

• A useful feature of the explicit formula for the determinant is that it immediately reveals that
detA = detA⊤ (as is seen by re-indexing the sum by replacing σ with σ−1); hence the determinant
is also the unique function which is multilinear and alternating with respect to the rows of a matrix.

• We recall some further important properties of determinant.

• The simplest case in which to compute a determinant is that of a diagonal matrix D, with diagonal
entries λ1, . . . , λn.

– In this case, the determinant is just the product
∏n

i=1 λi.

– This follows immediately from multilinearity and det I = 1.

– Similarly, if A is (upper- or lower-) triangular, meaning that Aij = 0 for i < j (or for i > j)),
then detA is again just the product of the diagonal entries.

– This can be seen, for example, from the permutation formula, by noting that all but one of the
terms in the sum will be zero; alternatively, it follows easily by induction using the Laplace
expansion, which we turn to next.

• Next, a useful way to compute determinants it the Laplace expansion or cofactor expansion
along a given row or column of a matrix A ∈ Kn×n.

– Here, for each i, j, we define the minor Mij ∈ K(n−1)×(n−1) of A to be the matrix obtained
by removing the i-th row and j-th column from A.

– The Laplace expansion along the j-th column is then the formula

detA =
n∑

i=1

(−1)i+jAij detMij .

– To prove it, write v1, . . . ,vn for the columns of A. Using linearity in the j-th column, we have
detA =

∑n
i=1Aij det(v1, . . . ,vj−1, ei,vj+1, . . . ,vn).

– Thus, it remains to prove that det(v1, . . . ,vj−1, ei,vj+1, . . . ,vn) = (−1)i+j detMij ; we note
immediately that since det is alternating, this reduces to showing left-hand side equals

(−1)n−i det(v1, . . . ,vj−1,vj+1, . . . ,vn, ei).

– Because the determinant is alternating and multilinear, it follows that it is unchanged upon
adding a multiple of one column to another column.

– Hence det(v1, . . . ,vj−1,vj+1, . . . ,vn, ei) remains unchanged if we replace each vk with vk =
vk −Aikei, i.e., if we replace the i-th entry of each vk by 0.

– Let us write u1, . . . ,un−1 ∈ Kn−1 for the columns of Mij , and let us write ũk ∈ Kn for the
vector obtained from uk by inserting a 0 as the i-th entry.

– We note that the sequence v1, . . . ,vj−1,vj+1, . . .vn is precisely equal to ũ1, . . . , ũn−1.
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– We have thus reduced to showing that (−1)i+j detMij is equal to (−1)n−j det(ũ1, . . . , ũn−1, ei),
i.e., that detMij = (−1)n−i det(ũ1, . . . , ũn−1, ei).

– Using that the determinant is also alternating with respect to rows, we have that the right-hand
side is equal to det(û1, . . . , ûn−1, en), where ûk ∈ Kn is the vector obtained from uk ∈ Kn−1

by adding a 0 at the end.

– We now claim in general for any vectors w1, . . . ,wn−1 ∈ Kn−1 that det(w1, . . . ,wn−1) =
det(ŵ1, . . . , ŵn−1, en).

– Indeed, this follows immediately from the characterization of the determinant, since both sides
are alternating, multilinear functions of w1, . . . ,wn−1 which take the value 1 on e1, . . . , en−1.

• Next, the most important property of the determinant is its multiplicativity, meaning det(AB) =
detA · detB for any A,B ∈ Kn×n.

– To prove this, fix A and consider the function F (B) = det(AB).

– If B has columns v1, . . . ,vn, then AB has columns Av1, . . . , Avn.

– It is thus immediate that F is alternating, and also, since A is linear, that F is multilinear.

– It follows that F (B) = F (I) · det(B) = det(A · I) det(B) = det(A) det(B) as desired.

• Another crucial property follows from this, which is that if A is invertible, then detA ̸= 0.

– This follows since detAdetA−1 = det(AA−1) = det I = 1.

– Conversely, if A is not invertible, then detA = 0.

∗ To see this, we use that if A is not invertible, then we can write some column of A as a
linear combination of the other columns, say detvn =

∑n−1
i=1 civi.

∗ It follows using the alternating property that

detA =
n−1∑
i=1

ci det(v1, . . . ,vn−1,vi) = 0.

– There is a second approach, which proves the contrapositive – if detA ̸= 0, then A is invertible
– by giving an explicit formula the A−1, based on the Laplace expansion.

∗ Namely, with the notation Mij as in the definition of the Laplace expansion, we have
(A−1)ij = (detA)−1(−1)i+j detMji.

∗ Indeed, if we define A−1 in this way, then using the Laplace expansion formula, it follows
that (A−1A)jj = (detA)−1

∑n
i=1(−1)i+jAij detMij = 1, and when j ̸= k, we have

(A−1A)jk = (detA)−1
∑n

i=1(−1)i+jAij detMik, which is 0, since
∑n

i=1(−1)i+jAij detMik

is equal to the determinant of the matrix obtained by replacing the k-th column of A
with the j-th column (and any matrix with two equal columns has zero determinant).

• Finally, one more important characterization of the determinant (which however we will not use, nor
even formulate precisely) is that the detA is the (signed) n-dimensional volume of the parallelepiped
{
∑n

i=1 aivi | 0 ≤ a1, . . . , an ≤ 1} spanned by the columns v1, . . . ,vn of A; more generally, for any
subset U ⊂ Rn with a well-defined n-dimensional volume vol(U), we have vol(A(U)) = |detA| ·
vol(U), where A(U) is the image of U under the linear transformation A.
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Characteristic polynomials

• Returning to eigenvalues, we said above that λ is an eigenvalue of A ∈ Kn×n if and only if λI− A
is not invertible, which we can now say is equivalent to det(λI−A) = 0.

• The explicit formula for the determinant says that det(λI− A) is a sum of products of n entries of
λI − A, where each such product contains one entry from each row, and in particular can contain
at most n diagonal entries.

• Since all occurrences of λ are on the diagonal, it follows that this is a polynomial of degree n in λ.

• We call the resulting polynomial pA(x) = det(xI−A) ∈ K[x] the characteristic polynomial of A.

• It follows that λ is an eigenvalue of A if and only if pA(λ) = 0.

• In particular, we see that an (n× n)-matrix A has at most n eigenvalues, and in fact has exactly
n (complex) eigenvalues, if counted with multiplicity.

• Finding the eigenvalues of A then just amounts to finding the roots of the polynomial pA(x).

• Once this is done, given an eigenvalue λ, finding the eigenvectors with eigenvalue λ then amounts
to computing the nullspace of λI − A (or equivalently A− λI), which we know how to do – this is
just a matter of solving the homogeneous system of linear equations (A− λI)x = 0.

• As an example, a diagonal or triangular matrix with diagonal entries λ1, . . . , λn has characteristic
polynomial

∏n
i=1(x− λi) and hence the eigenvalues are exactly λ1, . . . , λn.

• Note in general that det(A) = (−1)n det(0 · I − A) = pA(0) = (−1)n
∏n

i=1(0 − λi) =
∏n

i=1 λi, i.e.,
the determinant is always the product of the eigenvalues (taken with multiplicities).

• Another important property of the characteristic polynomial is that it is invariant under conjugation:
i.e., for any invertible matrix U , we have pUAU−1(x) = pA(x).

– Indeed, we have:

pUAU−1(x) = det(xI− UAU−1)

= det(UxIU−1 − UAU−1)

= det(U(xI−A)U−1)

= det(U) det(xI−A) det(U)−1

= det(xI−A)

= pA(x).

– Hence, when we conjugate a matrix, the resulting matrix has the same eigenvalues with the
same multiplicities.

– This is consistent with the fact that we already know, that when we diagonalize a matrix A,
the resulting diagonal entries are precisely the eigenvalues of A.
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Example 3.6.3

• Returning to the above matrix A =

[
1 1
4 1

]
, we have

xI −A =

[
x− 1 −1
−4 x− 1

]
and hence

pA(x) = (x− 1)2 − 4 = x2 − 2x− 3 = (x− 3)(x+ 1)

with roots λ1 = 3 and λ2 = −1. These are thus the eigenvalue of A.

• To find the eigenvectors for λ1 and λ2, we solve[
3− 1 −1
−4 3− 1

] [
x
y

]
=

[
0
0

]
and

[
−1− 1 −1
−4 −1− 1

] [
x
y

]
=

[
0
0

]
.

• These reduce to 2x− y = 0 and −2x− y = 0, with solutions (1, 2) and (1,−2), respectively.

Theorem 3.6.6: independence of eigenvectors

• We have seen that we can diagonalize any operator having a basis of eigenvectors. We now want to
investigate under what conditions this occurs.

• Theorem 3.6.6: if u1, . . . ,uk are eigenvectors of a linear operator L, and the corresponding eigen-
values λ1, . . . , λk are all distinct, then the vectors ui are linearly independent.

– The proof is by induction on k, the base case k = 1 being trivial.

– For the induction step, assume k > 1 and that u1, . . . ,uk−1 are linearly independent.

– Now suppose that c1u1 + · · ·+ ckuk = 0; we want to show c1 = · · · = ck = 0.

– Applying L to both sides, we obtain c1λ1u1 + · · ·+ ckλkuk−1 = 0.

– Subtracting λk times the first equation from the second, we obtain c1(λ1 − λk)u1 + · · · +
ck−1(λk−1 − λk)uk = 0.

– By the induction hypothesis and since λi ̸= λk for all i < k, we conclude that ci = 0 for all
i < k, and hence that ck = 0 as well, as required.

• We conclude that if an (n × n)-matrix has n distinct eigenvalues – or in other words if its
characteristic polynomial has n distinct roots – then it is diagonalizable.

Example 3.6.7

• Applying this theorem to the differentiation operator D ∈ C∞(R), we see that the functions erx

for differing values of r are all linearly independent, which is something we had previously deduced
from the uniqueness theorem for solutions to linear differential equations with constant coefficients.
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Example 3.6.9

• The diagonal matrix diag(2, 2, 3) with diagonal entries (2, 2, 3) is obviously diagonalizable, though
it does not have 3 distinct eigenvalues.

• Hence, the condition in the above theorem is sufficient, but not necessary.

• By contrast, the matrix

A =

2 1 0
0 2 0
0 0 3


really isn’t diagonalizable.

– The reason is that, if it were to have a basis of eigenvectors, these would all have to have
eigenvalue 2 or 3. But by computing the kernels of A − 2I and A − 3I, we find that the only
vectors with eigenvalue 2 and 3 are multiples of e1 and e3, respectively.

• As we mentioned previously, there are also examples like A =

[
0 −1
1 0

]
, which is not diagonalizable

as a real matrix (i.e., there is no real U with U−1AU diagonal) since both eigenvalues are complex,
however it has two distinct complex eigenvalues ±i, hence is diagonalizable as a complex matrix.

22.2 Triangulability

• As we have seen, it is not the case that every linear operator L ∈ L(V ) on a finite-dimensional
vector space V is diagonalizable.

• However, over the complex numbers, there are two nice results that do hold for every linear operator.

• The first says that every linear operator L on a finite-dimensional complex vector space V is
triangulable.

• This means that V admits a basis B = (b1, . . . ,bn) such that the matrix A = [L]B is upper-triangular
(i.e., Aij = 0 for j < i).

– Another way of saying this is that each Lbi is a linear combination only of itself and the earlier
bi’s: Lbj =

∑j
i=1Aijbi.

• The proof is by induction on the dimension n of V , the base case n = 1 being trivial.

– For the induction step, suppose n > 1.

– Choose an eigenvector b1 ∈ V of L, say with Lb1 = λb1 (we know that L must have at least
one eigenvector, since its characteristic polynomial has at least one root!).

– Now complete b1 to a basis b1,v2, . . . ,vn of V , and set W = Span(v2, . . . ,vn) ⊂ V .

– We have a linear map Π: V →W defined by Πb1 = 0 and Πvi = vi for i > 1.

– By the induction hypothesis, the linear map Π◦L : W →W is triangulable, so there is a basis
b2, . . . ,bn of W such that

Π(Lbj) =

j∑
i=2

Bijbi

for each j ≥ 2, for some coefficients Bij ∈ C.
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– It is easy to see that b1, . . . ,bn is a basis of V ; we claim that L is triangular with respect to
this basis.

– Indeed, we have Lb1 = λb1, and by the definition of Π and the above equation, it follows for
each j that Lbj = B1jb1 +

∑j
i=2Bijbi for some B1j ∈ C, as desired.

• A restatement of this theorem is that for every square matrix A ∈ Cn×n, there is an invertible
matrix U such that U−1AU is upper-triangular.
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23 Apr 23, 13.1: Eigenvalues and eigenvectors

23.1 Jordan normal form

• We saw that, though not every complex square matrix is diagonalizable, they are all triangulable.

• We now explain a second result, which is a bit more complicated, but also much stronger: it says
that each operator L on a finite-dimensional complex vector space V can be triangulated in a
particularly simple form, called a Jordan normal form, and moreover that this representation is
essentially unique.

– First, we define a Jordan block to be a matrix of the form
λ 1

. . . . . .
. . . 1

λ


for some λ ∈ C (all entries not shown are zero). In other words, it is equal to λI +N where
N is the matrix with

Nij = δi+1,j =

{
1 j = i+ 1

0 otherwise.

– A matrix is then in Jordan normal form if it is a block-diagonal matrix
A1

A2

. . .
Ak


where each block Ai is a Jordan block.

∗ Formally, we can define a block diagonal matrix as follows: supposing that each Ai is
a square matrix of size ni and setting n =

∑k
i=1 ni, we note that each a ∈ {1, . . . , n}

is of the form a =
∑ua−1

j=1 nj + va for some uniquely determined ua ∈ {1, . . . , k} and
va ∈ {1, . . . , nua}. Then the block-diagonal matrix A with blocks A1, . . . , Ak is defined
by setting

Aab =

{
(Aua)va,vb ua = ub

0 otherwise

∗ This definition is hard to work with in practice. It is better to work with the following
more abstract definition (which one should show is equivalent to the previous one): we
say that a vector space V is a direct sum of the subspaces W1, . . . ,Wk (denoted V =
W1 ⊕ · · · ⊕Wk) if for each v ∈ V , there are unique wi ∈ Wi for i = 1, . . . , k such that
v = w1, . . . ,wk. It is easy to see that, given ordered bases Bi of Wi for i = 1, . . . , k, the
sequence of vectors B = B1 · · · Bk in V obtained by concatenating them is an ordered basis
of V . Now the fact is that for an operator L ∈ L(V ) on a finite-dimensional space V and
an ordered basis B of V , the matrix A = [L]B is block-diagonal with blocks A1, . . . , Ak

if and only if there is a direct sum decomposition V = W1 ⊕ · · · ⊕Wk such that each
Wi is invariant under L (i.e., Lw ∈ Wi for w ∈ Wi), and bases Bi of each Wi such that
B = B1 · · · Bk and Ai = [L|Wi

]Bi . (In particular, a given matrix A ∈ Kn×n is block
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diagonal if and only if the standard basis E of Kn can be decomposed into subsequences
E = E1 . . . Ek such that each Wi = Span Ei is invariant under L; and in this case the i-th
block is the matrix Ai = [A|Wi

]Ei .)

• The theorem (which is quite non-trivial, and I will not prove it here) is then that for every linear
operator L on a finite-dimensional vector, there exists some basis B such that the matrix [L]B is in
Jordan normal form.

– Again, an equivalent statement is that for every square matrix A ∈ Cn×n, there is an invertible
matrix U such that U−1AU is in Jordan normal form.

– As mentioned, there is a uniqueness statement as well: any two Jordan normal forms for L
are the same, up to rearranging the Jordan blocks.

• Note: the letter N is used because this matrix is nilpotent meaning that some power of it is zero;
in fact Nd is zero where N ∈ Cn×n.

– More generally, we can compute Nk explicitly for any k ≥ 0: it is given by (Nk)ij = δ(i+k),j .

– This is because Nei = ei−1 for i = 1, . . . , d (where we set ei = 0 for i ≤ 0) and hence
Nkei = ei−k.

23.2 13.1 Eigenvalues and eigenvectors

• We return to the linear system ẋ = Ax for some A ∈ Kn×n.

• As we have seen, this has a solution x = eλtu whenever u is an eigenvector of A with eigenvalue λ.

Example 13.1.1

• Consider the linear system with matrix A =

[
1 1
4 1

]
.

• We have seen that A has eigenvectors u1 = (1, 2) and u2 = (1,−2) with eigenvalues 3 and −1,
respectively.

• Hence, we obtain solutions

x(t) = c1e
3t

[
1
2

]
+ c2e

−t

[
1
−2

]
for c1, c2 ∈ K.

• Moreover, for any initial condition x0 ∈ K2, we can write x0 = c1u1 + c2u2 for some c1, c2 ∈ K,
hence the solution x = c1e

3tu1 + c2e
−tu2 satisfies x(0) = x0.

• Since by the existence and uniqueness theorem, there is a unique solution with this initial condition,
it follows that every solution is of the form x as above; i.e., this is the general solution.
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13.1B: Eigenvector matrices

• More generally, the above argument shows that if A is diagonalizable with eigenbasis u1, . . . ,un and
eigenvalues λ1, . . . , λn, then the general solution to ẋ = Ax is

∑n
i=1 cie

λitui.

• We can summarize this in a nice way by introducing the matrix U with columns u1, . . . ,un. Recall
that we have seen that A = UDU−1, where D = diag(λ1, . . . , λn) is the diagonal matrix with entries
(λ1, . . . , λn).

• Now introduce the diagonal matrix Λt = diag(eλ1t, . . . , eλnt).

• The general solution can then be written as x = UΛtc with c = (c1, . . . , cn) ∈ Kn an arbitrary
vector.

• We can see directly that this is a solution: we have that Λ̇t = DΛt (where the derivative of a
matrix-valued function is, as usual, defined entry-wise differentiation).

– Next, since matrix multiplication satisfies the product rule d
dt(XY ) = ẊY +XẎ (this follows

from the formula for matrix multiplication, and the product and sum rules for differentiation),
and since the matrices U and c are constant, it follows that ẋ = UDΛtc.

– But we have UD = AU , hence ẋ = AUΛtc = Ax, as required.

• We can similarly see directly that this is the general solution: given any initial condition x0, to find
a solution x = UΛtc with x(0) = x0, we see we must have x0 = UΛ0c = Uc and hence c = U−1x0.
Thus, we see that x = UΛtU

−1x0 is the desired solution.

– Soon, we will see that, using the matrix exponential, this form of the solution form generalizes
to the case where A is not diagonalizable.

Geometric interpretation

• Continuing with the assumption that A is diagonalizable, A = UDU−1, we can rewrite the equation
ẋ = Ax as U−1ẋ = DU−1x.

• Let us set y = U−1x. Then y = [x]B is just the coordinate vector of x with respect to the basis B
consisting of the columns of U .

• The equation in y is then ẏ = Dy.

• This is just an uncoupled equation with general solution y = Λtc. (This is the same general solution
x = Uy = UΛtc we obtained above.)

• In other words, if we use the coordinate system given by the eigenbasis B, in which A is just given
by scaling along the coordinate axes, then the differential equation becomes a simple, uncoupled
equation.
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24 Apr 28, 13.2: Matrix exponentials

24.1 13.2A: Definition

• For a square matrix A, we define its matrix exponential

eA =
∞∑
k=0

Ak

k!
.

where by definition A0 = I.

– As usual, this is meant as a limit of partial sums limN→∞
∑N

k=0
Ak

k! , and where we are taking an

entry-wise limit: i.e., for a sequence of matrices BN , we say BN
N→∞−−−−→ B if (BN )ij

N→∞−−−−→ Bij

for each (i, j).

– Of course, a limit of a given sequence of matrices may or may not exist; and in particular, it
is not a priori clear that the matrix exponential is always defined.

• As a simple example where the matrix exponential clearly is defined, consider a diagonal matrix
D = diag(λ1, . . . , λn).

– Then Dk = diag(λk1, . . . , λ
k
n), hence

∑N
k=0

Dk

k! = diag
(∑N

k=0
λk
1
k! , . . . ,

∑N
k=0

λk
n
k!

)
and hence in

the limit we have that eD = diag(eλ1 , . . . , eλn).

– In particular, wit the notation Λt from the previous section, we see that Λt = etD.

Theorem 13.2.1

• Theorem: The matrix exponential eA exists for all matrices A ∈ Cn×n.

– Moreover, for a fixed A, the function t 7→ etA satisfies the following properties:

– (a) e(s+t)A = esAetA.

– (b) etAe−tA = I.

– (c) d
dte

tA = AetA = etAA.

• As a preliminary remark, note that for any two polynomials p(x) and q(x), the matrices p(A) and
q(A) commute, i.e., p(A) · q(A) = q(A) · p(A).

– (We recall here that by p(A) is defined as
∑n

i=0 aiA
i, where p(x) =

∑n
i=0 aix

i, and q(A)
similarly.)

– This is clear since Am and An obviously commute for any m,n, and if a matrix X commutes
with both Y and Z, then it also commutes with aY + bZ for any scalars a and b. (More
generally, if A and B commute, the so do p(A) and q(A).)

– It follows that if p(A) =
∑∞

n=0 anA
n and q(A) =

∑∞
n=0 bnA

n are convergent power series in
A, then p(A) commutes with q(A) (and with q(B) for any B commuting with A.)

– Indeed, if we let pN (A) and qN (A) be the N -th partial sums, of these power series, then
pN (A)qN (A) = qN (A)pN (A).
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– Now we may to the limit N → ∞ to obtain p(A)q(A) = q(A)p(A), since matrix multiplication
commutes with limits: if XN

N→∞−−−−→ X and YN
N→∞−−−−→ Y then XN · YN

N→∞−−−−→ X · Y . This is
because for a matrix the entries of a matrix product X · Y are all continuous functions in the
entries of X and Y .

• Let us now see that eA always exists.

– That is, we must see that the sequence
∑N

k=0
Ak

k! converges (entry-wise).

– Choose some b > 0 such that |Aij | < b for all (i, j).

– Since the entries of A2 are of the form
∑n

k=1 aikakj , it follows from the triangle inequality that
they are bounded in absolute value by nb2.

– Arguing similarly by induction, we find that the entries of Ak are bounded in absolute value
by nk−1bk.

– We may now apply the comparison test to each entry of eA against the convergent series
1 + b+

∑∞
k≥2

nk−1bk

k! to conclude that each entry of eA is defined by an absolutely convergent
series.

• We next turn to (c).

– For the same reason as with ordinary power series, we can differentiate matrix-valued power
series eA term-by-term. (The reason is each entry of eA is a so-called uniform limit of the
functions defined by the partial sums.)

– Hence, we have

d

dt
etA =

d

dt

∞∑
k=0

tkAk

k!
=

∞∑
k=0

ktk−1Ak

k!
=

∞∑
k=1

tk−1Ak

(k − 1)!
= A

∞∑
k=0

tkAk

k!
= AetA,

where in the last step, we use the same fact used above that we may interchange matrix
multiplication with limits.

• We now prove (b).

– Using the product rule for matrix multiplication, and the fact that A commutes with esA for
any s, we have

d

dt

(
e−tAetA

)
= −tAe−AetA +Ae−tAetA = 0.

– It follows that each entry of e−tAetA is constant in t.

– Since e−0Ae0A = I · I = I, it follows that e−tAetA = I for all t.

• Next, we prove that f(t) = etA is the unique matrix-valued function satisfying f ′(t) = Af(t) and
f(0) = I.

– This is analogous to the corresponding fact which we know about the ordinary exponential
function, and the proof is the same:
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– For any such function f , we have

d

dt

(
e−tAf(t)

)
= −Ae−tAf(t) +Ae−tAf(t) = 0.

– Hence the entries of e−tAf(t) are all constant in t, hence since e−0Af(0) = I · I, it follows that
e−tAf(t) = I for all t.

– Hence f(t) = (e−tA)−1 = etA for all t.

• Finally, we prove (a).

– Fix s ∈ R and consider the function g(t) = e−sAe(t+s)A.

– Using the product rule and the chain rule, we have g′(t) = Ae−sAe(t+s)A = Ag(t).

– We also have g(0) = e−sAe(0+s)A = I.

– Hence, by the above uniqueness statement, g(t) = etA, hence e(t+s)A = esAetA, as desired.

24.2 13.2B: Solving systems

• Now consider the equation ẋ = Ax for any matrix A.

• Setting x(t) = etAu for any u ∈ Kn, we have using the product rule that ẋ = AetAu = Ax, hence
this is a solution.

• Moreover, this is the general solution, since for any initial condition x0, we have e0Ax0 = x0, hence
etAx0 is the unique solution satisfying this initial condition.

• We can also see directly that it is the general solution, without appealing to the uniqueness theorem:
if x is any solution, so that ẋ = Ax, we then have by the product rule d

dt(e
−Atx) = −Ae−Atx +

Ae−Atx = 0, hence e−Atx must be equal to some constant u, and hence x = eAtu.

• Note also that if Au = λu, then (as you’ll show in the homework) Anu = λnu for all n, and hence
etAu = eλtu.

– Hence, in this case the solution etAu becomes the solution eλtu we found previously (as it had
to, by the uniqueness theorem).

24.3 13.2C: Relationship to eigenvectors

• If A is a diagonal matrix A = D = diag(λ1, . . . , λn), we have etA = Λt in the notation from above,
so in this case, we recover the general solution x = Λtu to the uncoupled system ẋ = Ax.

• Now suppose more generally that A is diagonalizable so that A = UDU−1.

• We now make the crucial observation that exponentiation commutes with conjugation: eY XY −1
=

Y eXY −1. Indeed, we have

eY XY −1
= lim

N→∞

N∑
k=0

(Y XY −1)k

k!
= lim

N→∞

N∑
k=0

Y XkY −1

k!

= lim
N→∞

Y
( N∑
k=0

Xk

k!

)
Y −1 = Y

(
lim

N→∞

N∑
k=0

Xk

k!

)
Y −1 = Y eXY −1,
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where in the penultimate step we are once again using the continuity of matrix multiplication, and
where in the second step, we are using that (Y AY −1)(Y BY −1) = Y (A·B)Y −1 for any A,B ∈ Cn×n,
and similarly, by induction, for the product of the conjugates of any number of matrices.

• Hence, the general solution to ẋ = Ax is

etAu = eU(tD)U−1
u = UetDU−1u = UΛtU

−1u,

recovering the general solution we found before.

• Let us now look at a non-diagonalizable example.

Example 13.2.1

• Let A =

[
1 1
0 1

]
.

• Note that An =

[
1 k
0 1

]
and hence (tA)n =

[
tn ktn

0 tn

]
.

• Noting that
∑∞

k=0 k
tk

k! = t ddte
t = tet, it follows that

etA =

[
et tet

0 et

]
.

• We thus have the general solution

x = etA

[
c1
c2

]
=

[
c1e

t + c2te
t

c2e
t

]
.

• We thus see the reappearance of the term tet that came up in linear equations with repeated roots.

– Note here, that pA(x) does indeed have the repeated root 1 with multiplicity 2.

– But beware! The matrix A = I also has 1 as a double root, but its general solution is
x = (c1e

t, c2e
t).

– The difference is that in the second case, the multiplicity 2 eigenvalue corresponds to two
linearly independent eigenvectors, whereas in the first case, there is only one eigenvector
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25 Apr 30, 13.2D: Computing matrix exponentials

25.1 13.2D: Computing etA in practice.

• We know how to compute etA when A is diagonalizable (by diagonalizing A), and we saw how to
compute etA in the above simple example. We now seek how to compute it in general.

• This can be done by using the Jordan normal form A = UJU−1 of A.

– Recall that (tA)k = U(tJ)kU−1 and etk = UetJU−1.

– Moreover, products and sums of block-diagonal matrices (with blocks of the same size and in
the same order) are computed block-wise

∗ I.e., if X and Y are block-diagonal with blocks X1, . . . , Xr and Y1, . . . , Yr, respectively,
with Xi of the same size as Yi, then X + Y and X · Y are block-diagonal with blocks
X1 + Y1, . . . , Xr + Yr and X1 · Y1, . . . , Xr · Yr, respectively.

∗ (This is because if V = W1 ⊕ · · · ⊕Wk is a direct-sum decomposition of a vector space
V and each Wi is invariant with respect to both L1, L2 ∈ L(V ), then each Wi is also
invariant with respect to L1 + L2 and L1 ◦ L2.)

– Hence if J has Jordan blocks J1, . . . , Js, then etJ has blocks etJ1 , . . . , etJs .

– Hence, if we can compute the exponential for a single Jordan block, we can compute it for the
entire Jordan normal form.

• Now, recall that each Jordan block Ji has the form Ji = λI + N , where N is the matrix given by
Nij = δ(i+1),j . Let d be the size of the Jordan block Ji.

– Using that N j = 0 for j ≥ d (more generally, it is easy to see that N j is the matrix with zeros
everywhere, and ones on the diagonal which is j entries above the main diagonal), it follows
that

(tJi)
k = tk

k∑
j=0

(
k

j

)
λk−jN j = tk

d−1∑
j=0

(
k

j

)
λk−jN j

– Hence

etJi =

∞∑
k=0

tk

k!

d−1∑
j=0

(
k

j

)
λk−jN j =

d−1∑
j=0

N j
∞∑
k=j

tk

k!

(
k

j

)
λk−j

=

d−1∑
j=0

N j

j!

∞∑
k=j

tk

(k − j)!
λk−j =

d−1∑
j=0

N j

j!

∞∑
k=0

tk+j

k!
λk =

d−1∑
j=0

tjeλt

j!
N j

– Hence, etJi looks like

eλt ·



1 t t2

2
t3

3! · · · td−1

(d−1)!

0 1 t t2

2

...
...

. . . . . . . . .
. . . . . . t2

2
1 t

0 · · · 0 1


.
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– We again see the reappearance of the terms tkeλt we saw for linear differential equations with
multiple roots; but again, note here that it is not just the multiplicity of the roots that matters,
but the size of the Jordan blocks.

• We conclude that etJ is a block-diagonal matrix with blocks etJi as above.

• Hence, finally, etA = UetJU−1, and hence we have an explicit way to compute etA once we have its
Jordan normal form.

– Of course, this only helps if we can find the Jordan normal form of A – i.e., find the basis U
such that U−1AU is in Jordan normal form.

– There is a general algorithm to do this as well, once the eigenvalues of A are known (which
we will not present).

– We next present an alternative method to compute etA which is often easier.

– But first, let us work out an example directly using the Jordan normal form.

Example 13.2.5 using Jordan normal form

• Consider the matrix A =

[
0 1
−4 −4

]
.

• This has characteristic polynomial det
[
λ −1
4 λ+ 4

]
= λ2 + 4λ + 4 = (λ + 2)2 with a double root

λ = −2.

• Hence, the only two possibilities for the Jordan normal form are
[
−2 0
0 −2

]
and

[
−2 1
0 −2

]
.

• Next, let us find the eigenvectors: we have ker(A− (−2)I) = ker

[
2 1
−4 −2

]
= Span

{[
1
−2

]}
.

• We see that A has only one independent eigenvector, so it cannot be diagonalizable. Thus, its

Jordan normal form is J =

[
−2 1
0 −2

]
.

• Next, we seek the matrix U such that A = UJU−1, or in other words, the basis u1,u2 such that J
is the matrix for A with respect to this basis.

• Recalling what it means for J to represent A with respect to the basis u1,u2, and inspecting J , we
see that we must have Au1 = −2u1, hence u1 is the (unique up to scaling) eigenvector u1 = (1,−2);
and we see that Au2 = u1 − 2u2, or in other words (A− 2I)u2 = u1.

• Thus to find u2 = (x, y), we solve
[
2 1
−4 −2

] [
x
y

]
=

[
1
−2

]
, and we find (x, y) = (1,−1).

• In conclusion, we have U =

[
1 1
−2 −1

]
, and hence U−1 =

[
−1 −1
2 1

]
.

– (As a consistency test, we can verify that A = UJU−1 as required.)

• Hence:

etA = UetJU−1 = e−2tU

[
1 t
0 1

]
U−1 = e−2t

[
1 + 2t t
−4t 1− 2t

]
.
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26 May 5, More 13.2D: Computing matrix exponentials with Cayley-
Hamilton

26.1 13.2.5 Cayley-Hamilton theorem

• We next turn to the promised alternative method to compute the matrix exponential.

– We will prove the following Theorem: etA can be written as a linear combination etA =∑n−1
j=0 bj(t)A

j for some smooth functions bj(t).

– The proof will make use of the Cayley-Hamilton theorem.

• The Cayley-Hamilton theorem says that pA(A) = 0 for any A ∈ Cn×n, where pA is the charac-
teristic polynomial of A.

– This follows easily from the existence of the Jordan normal form A = UJU−1.

– Indeed, if A has eigenvalues λ1, . . . , λs with multiplicities d1, . . . , ds, then pA(x) =
∏s

i=1(x −
λi)

di and pA(A) =
∏n

i=1(A− λiI)
di = U

∏n
i=1(J − λiI)

diU−1.

– But now each Jordan block Jk is of the form λiI+N for some i and has size at most ℓ ≤ di (since
the Jordan block Jk contributes ℓ copies of the eigenvalue λk to the characteristic polynomial).

– Hence (Jk − λiI)
di = Ndi = 0.

– Hence
∏s

i=1(Jk − λiI)
di = 0 for each k, and since polynomials of block-diagonal matrices are

evaluated block-wise, it follows that
∏s

i=1(J − λiI)
di = 0.

• Note that this proof actually gives a stronger result, namely thatmA(A) = 0 for a certain polynomial
mA(x) called the minimal polynomial, which is smaller than, i.e., divides pA(x).

– mA(x) is defined by mA(x) =
∏s

i=1(x−λi)mi , where mi is the size of the largest Jordan block
of A with eigenvalue λi.

– It is called minimal because, as is easily proven, it is the unique monic polynomial of least
degree with mA(A) = 0, or also because it divides every polynomial p with p(A) = 0.

– It will follow that in the theorem we are working towards – i.e., that etA is a combination of
the powers of A – we similarly only need to take the first d powers, where d is the degree of
mA(x).

• Let us now prove that etA can be written as a linear combination etA =
∑d−1

j=0 bj(t)A
j for some

smooth functions bj(t), with d the degree of mA(x).

• To begin with, it follows immediately from the Cayley-Hamilton theorem that Ad is a linear combi-
nation

∑d−1
j=0 cjA

j .

• By induction, it follows that for all N ≥ 0, AN is a linear combination of A0, . . . , Ad−1, i.e., we have
AN = c

(N)
0 A0 + · · ·+ c

(N)
d−1A

d−1 for some coefficients c(N)
0 , . . . , c

(N)
d−1.

• Specifically, we find that for N ≥ d, the coefficients c(N)
j satisfy the recurrence relations c(N+1)

0 =

c0c
(N)
d−1 and c(N+1)

j = cjc
(N)
d−1 + c

(N)
j−1 for j > 0.
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– We also have the base case c(N)
j = δjNcj for N < d.

– It follows by induction that if |cj | < b for all j, and b > 1, then |c(N)
j | < (2b)N for all N .

• We conclude that

etA =

∞∑
k=0

tk
Ak

k!
=

∞∑
k=0

tk
d−1∑
j=0

c
(k)
j

k!
Aj =

d−1∑
j=0

Aj
∞∑
k=0

c
(k)
j

k!
tk,

as desired, where the series bj(t) =
∑∞

k=0

c
(k)
j

k! t
k converges absolutely by the above estimates, and

where the possibility of exchanging the two sums also follows from absolute convergence.

• Thus, once we compute the powers A0, A1, A2, . . . , Ad−1, computing etA boils down to finding the
coefficient functions bj(t), which we turn to next.

Example 13.2.8: side remark: Cayley Hamilton and inverses

• They Cayley-Hamilton theorem gives an additional method for computing the inverse of a matrix.

• Namely, if pA(x) =
∑n

i=0 aix
i, then 0 = pA(A) =

∑n
i=0 aiA

i.

• If A is invertible, then a0 = detA ̸= 0, and we can then solve for A0 = I to obtain

I = A0 = A(−a0
n−1∑
i=1

aiA
i−1).

• This shows that A−1 = −a0
∑n−1

i=1 aiA
i−1.

• Example: let’s compute the inverse of A =

2 3 1
0 2 2
0 0 2

 this way.

• We have pA(x) = (x− 2)3 = x3 − 6x2 + 12x− 8.

– Hence 0 = pA(A) = A3 − 6A2 + 12A− 8.

– Solving for A−1, we obtain:

A−1 =
1

8
(A2 − 6A+ 12I)

• Next, we compute

A2 =

4 12 10
0 4 8
0 0 4


• Hence

A−1 =
1

8
(A2 − 6A+ 12I) =

1

8

4 −6 4
0 4 −4
0 0 4

 .
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Theorem 13.2.4

• Theorem: We can write eAt as a linear combination eAt =
∑n−1

j=0 bj(t)A
j in which the coefficient

functions bj(t) satisfy

etλk =
n−1∑
j=0

bj(t)λ
j
k (Eλk,0)

for all eigenvalues λ1, . . . , λr. Moreover, if some λk appears with multiplicity m, the bj(t) can be
chosen so as to also satisfy

di

dλi

∣∣∣∣
λ=λk

etλ =
di

dλi

∣∣∣∣
λ=λk

n−1∑
j=0

bj(t)λ
j (Eλk,i)

for each i = 1, . . . ,m− 1.

• As a first remark, note that the above equations (Eλk,i) are a system of n linear equations in the
functions bj(t).

– In the case when all the eigenvalues are distinct, the matrix of coefficients appearing in this
system is exactly the Vandermonde matrix, and is therefore invertible. Hence, we see that
there is a unique choice of functions b0, . . . , bn−1 satisfying these equations.

– Similarly, in the case where some eigenvalues appear with multiplicities, the resulting matrix is
the generalized Vandermonde matrix which came up in the proof of Theorem 11.2.4, which as
we saw there is also invertible. Hence, in this case too, there is a unique choice of b0, . . . , bn−1

satisfying the equations.

– (An important consequence of this is that the coefficients b0(t), . . . , bn−1(t) in the formula
etA =

∑n−1
j=0 bj(t)A

j for the exponential only depend on the eigenvalues of A.)

• Now, we first prove a part of the theorem. Namely, we prove that any functions b0, . . . , bn−1 with
etA =

∑n−1
i=0 biA

i must satisfy the equations (Eλk,i) for i = 0, 1, . . . ,m′ − 1, where m′ ≤ m is the
size of the largest Jordan block of A with eigenvalue λk. (Note that the number of such equations
is exactly the degree d of the minimal polynomial of A.)

– By definition, we have etA =
∑n−1

j=0 bj(t)A
j .

– Taking the Jordan normal form A = UJU−1, it follows by conjugating both sides that etJ =∑n−1
j=0 bj(t)J

j .

– Now, fix any λk, and let B = λkI + N be the largest Jordan block of J with eigenvalue λk,
so that the size of B is m′ as above (recall that N is the square matrix with zeros everywhere
and ones just above the diagonal: Nab = δ(a+1),b).

– Since multiplication of block-diagonal matrices is compute block-wise, we conclude that

etB =
n−1∑
j=0

bj(t)B
j .

• Now, we know from an earlier computation that the left-hand side of the above equation etB =
eλt

∑m′−1
i=0

ti

i!N
i.

• Let us similarly compute the right-hand side.
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– Since B = λkI +N , we have Bj =
∑j

i=0

(
j
i

)
λj−i
k N i.

– Hence:

n−1∑
j=0

bjB
j =

n−1∑
j=0

bj

j∑
i=0

(
j

i

)
λj−i
k N i =

n−1∑
i=0

N i
n−1∑
j=i

(
j

i

)
bjλ

j−i
k =

m−1∑
i=0

N i
n−1∑
j=i

(
j

i

)
bjλ

j−i
k

• Comparing the two sides and noting that the N i are linearly independent for i = 0, . . . ,m′− 1 (this
follows by explicitly computing the powers of N ∈ Cm′×m′), we find that

eλkt
ti

i!
=

n−1∑
j=i

(
j

i

)
bjλ

j−i
k

for each i = 0, . . . ,m− 1.

– Setting i = 0, this gives the first equation

eλt =

n−1∑
j=0

bjλ
j
k

– For the case i > 0, we multiply both sides by i! to obtain

eλktti =

n−1∑
j=i

j!

(j − i)!
bjλ

j−i
k .

– But then we see that the left-hand side is

di

dλi

∣∣∣∣
λ=λk

etλ

and the right hand side is
di

dλi

∣∣∣∣
λ=λk

n−1∑
j=0

bj(t)λ
j

as desired.

• We have shown that any b0, . . . , bn−1 with etA =
∑n−1

j=0 bjA
j must satisfy (Eλk,i) with 0 ≤ i < m′.

Let us call the set of these equations E ′. It remains to show that the bj can be so chosen as to
also satisfy (Eλk,i) with m′ ≤ i < m. Let us write E for the entire system of equations. Hence E
is a system of n equations, and E ′ is a system of d equations, where d is the degree of the minimal
polynomial of A.

– Now, by the remark above about the invertibility of the coefficient matrix of the system E , we
know that there is a unique solutions b̃0, . . . , b̃n−1 to the entire system E .

– Since, by the Cayley-Hamilton argument we gave previously, each Al with l ≥ d, as well as
etA, is a linear combination of A0, . . . , Ad−1, it follows that there exist functions b0, . . . , bd−1

satisfying

etA −
n−1∑
j=d

b̃j(t)A
j =

d−1∑
j=0

bj(t)A
j . (⋆)
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– Let us now consider E ′ to be a system of equations in b0, . . . , bd−1, by fixing the values of the
remaining variables bd, . . . , bn−1 to be b̃d, . . . , b̃n−1.

– By the first part of the proof, we know that any b0, . . . , bd−1 satisfying (⋆) must also satisfy
E ′. We also know that b̃0, . . . , b̃d−1 satisfy E ′.

– But the coefficients matrix of E ′ is a d × d (generalized) Vandermonde matrix, and is hence
invertible, and so we conclude that bj = b̃j for j = 0, . . . , d− 1.

– Hence, finally, we have that b̃0, . . . , b̃n−1 satisfy both E and etA =
∑n−1

j=0 b̃jA
j , as desired.

Example 13.2.5 again

• Let us now repeat Example 13.2.5 but now using this theorem. We have A =

[
0 1
−4 −4

]
.

• We know that etA = b0(t)I + b1(t)A for some functions b0 and b1.

• Moreover, since we have a single eigenvalue λ1 = −2 with multiplicity 2, the theorem says that we
have the equations

eλ1t = b0(t)λ
0
1 + b1(t)λ

1
1

d

dλ

∣∣∣∣
λ=λ1

eλt =
d

dλ

∣∣∣∣
λ=λ1

b0(t)λ
0 + b1(t)λ

1,

i.e.,
e−2t = b0(t)− 2b1(t) te−2t = b1(t).

• We thus have b1 = te−2t and hence b0 = e−2t + 2te−2t.

• We conclude that

etA = b0I + b1A = e−2t

[
1 + 2t t
−4t 1− 2t

]
,

which is the same answer we got before.
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27 May 7, 13.3: Nonhomogeneous systems

27.1 13.3A: Solution formula

• We can handle non-homogeneous linear systems of ODEs just in the same way we handled a single
non-homogeneous linear equation, using exponential multipliers.

• First, let us recall the general linear-algebra fact that given any particular solution xp to the equation

ẋ(t) = Ax(t) + b(t),

the general solution will be
x = xp + xh,

where xh is a general homogeneous solution, i.e., a general solution to

ẋ(t) = Ax(t).

• Thus, since we already know how to solve the homogeneous equation, finding the general solution
to the inhomogeneous equation amounts to finding any one particular solution.

Theorem 3.2

• For any t0 ∈ R, a particular solution xp to

ẋ(t) = Ax(t) + b(t)

is given by

xp(t) = etA
∫ t

t0

e−τAb(τ) dτ

• Remarks:

– From the just-mentioned general principle about inhomogeneous equations, it follows that the
general solution is

x = xp + xh = etA
∫ t

t0

e−τAb(τ) dτ + etAc

with c ∈ Kn.

– Note that if we change t0, this will simply have the effect of modifying the constant c.

– More generally, if we replace
∫ t
t0
e−τAb(τ) dτ with any antiderivative of e−tAb(t), we will

obtain a general solution.

∗ Unlike in the single-variable case, the general antiderivative of a vector-valued function
y(t) is not

∫ t
t0
y(τ) dτ but rather

(∫ t
t1
y1(τ) dτ, . . . ,

∫ t
tn
yn(τ) dτ

)
, i.e., we can choose a

different constant of integration on each component.

∗ Hence, concretely, instead of
∫ t
t0
e−τAb(τ) dτ , we can just choose an antiderivative of each

component of e−tAb(t).

∗ Note that in the book, they denote this by
∫
e−tAb(t) dt, but beware that, as we just

said, this does not correspond to a single definite integral, but rather a separate definite
integral on each component.
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∗ Finally, note that if we take a general anti-derivative
∫
e−tAb(t) dt in this sense, the result

etA
∫
e−tAb(t) dt is actually the general solution, since the varying choices of the constant

c in the homogeneous term simply correspond to different choices of anti-derivatives.

• Proof:

– As mentioned, the proof is just an application of exponential multipliers.

– We multiply both sides of the equation x = Ax+b by the invertible matrix etA to obtain the
equivalent equation

e−tAx− e−tAAx = etAb,

which we can also write as
d

dt

(
e−tAx

)
= e−tAb.

– Applying the fundamental theorem of calculus coordinate-wise, we find a particular solution
to this equation by integrating from any t0:

e−tAxp(t) =

∫ t

t0

e−τAb(τ) dτ.

– We then solve for xp:

xp = etA
∫ t

t0

e−τAb(τ) dτ.

– As mentioned above, in the penultimate step, we could have instead chosen an arbitrary
antiderivative “

∫
e−tAb(t) dt”, and would then arrive instead at the general solution x(t) =

etA
∫
e−tAb(t) dt.

Example 13.3.1

• Let’s solve

ẋ = Ax+ b =

[
1 1
0 1

]
x+

[
et

e−t

]
.

• We have already considered the corresponding homogeneous equation: since A is in Jordan normal
form, we have

eAt =

[
et tet

0 et

]
.

and hence the general homogeneous solution is

xh = eAtc =

[
c1e

t + c2te
t

c2e
t

]
.

• We now compute a particular inhomogeneous solution.
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– We have

xp = etA
∫
e−tAb(t) dt

= etA
∫ [

e−t −te−t

0 e−t

] [
et

e−t

]
dt

= etA
∫ [

1− te−2t

e−2t

]
dt

= etA
[
t+ 1

2 te
−2t + 1

4e
−2t

−1
2e

−2t

]
=

[
tet + 1

4e
−t

−1
2e

−t

]
• Hence, the general solution is

x = xp + xh =

[
tet + 1

4e
−t + c1e

t + c2te
t

−1
2e

−t + c2e
t

]
.
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