Problem 1. Spivak 2-26 (the existence of bump functions)

2-26.* Let
$$f(x) = \begin{cases} e^{-(x-1)^{-2}} \cdot e^{-(x+1)^{-2}} & x \in (-1,1), \\ 0 & x \notin (-1,1). \end{cases}$$

(a) Show that $f: \mathbf{R} \to \mathbf{R}$ is a C^{∞} function which is positive on (-1,1) and 0 elsewhere.

(b) Show that there is a C^{∞} function $g: \mathbb{R} \to [0,1]$ such that g(x) = 0 for $x \leq 0$ and g(x) = 1 for $x \geq \varepsilon$. Hint: If f is a C^{∞} function which is positive on $(0,\varepsilon)$ and 0 elsewhere, let $g(x) = \int_{0}^{x} f / \int_{0}^{\varepsilon} f$.

(c) If $a \in \mathbf{R}^n$, define $g: \mathbf{R}^n \to \mathbf{R}$ by

$$g(x) = f([x^1 - a^1]/\varepsilon) \cdot \ldots \cdot f([x^n - a^n]/\varepsilon).$$

Show that g is a C^{∞} function which is positive on

$$(a^1 - \varepsilon, a^1 + \varepsilon) \times \cdots \times (a^n - \varepsilon, a^n + \varepsilon)$$

and zero elsewhere.

(d) If $A \subset \mathbb{R}^n$ is open and $C \subset A$ is compact, show that there is a non-negative C^{∞} function $f: A \to \mathbb{R}$ such that f(x) > 0 for $x \in C$ and f = 0 outside of some closed set contained in A.

(e) Show that we can choose such an f so that $f: A \to [0,1]$ and f(x) = 1 for $x \in C$. *Hint:* If the function f of (d) satisfies $f(x) \ge \varepsilon$ for $x \in C$, consider $g \circ f$, where g is the function of (b).

Problem 2. Spivak 3-38 (an example showing why we need to demand convergence of $\sum_{\varphi \in \Phi} \int_A \varphi \cdot |f|$, and not just of $\sum_{\varphi \in \Phi} |\int_A \varphi \cdot f|$, in the definition (on Spivak p. 65) of $\int_A f := \sum_{\varphi \in \Phi} \int_A \varphi \cdot f$ for an open set A)

3-38. Let A_n be a closed set contained in (n, n + 1). Suppose that $f: \mathbb{R} \to \mathbb{R}$ satisfies $\int_{A_n} f = (-1)^n / n$ and f = 0 for $x \notin A_n$. Find two partitions of unity Φ and Ψ such that $\Sigma_{\varphi \in \Phi} \int_{\mathbb{R}} \varphi \cdot f$ and $\Sigma_{\psi \in \Psi} \int_{\mathbb{R}} \psi \cdot f$ converge absolutely to different values.