Problem 1. Let V and W be vector spaces.

(a) Prove that the operation $\otimes : \mathcal{T}^k \times \mathcal{T}^l \to \mathcal{T}^{k+l}$ is bilinear, i.e., given k-tensors $S, S' \in \mathcal{T}^k$, *l*-tensors $T, T' \in \mathcal{T}^l$, and $a \in \mathbb{R}$, we have:

 $(S+S') \otimes T = S \otimes T + S' \otimes T \qquad S \otimes (T+T') = S \otimes T + S \otimes T' \qquad (aS) \otimes T = a(S \otimes T) = S \otimes (aT)$

- (b) Prove that \otimes is associative, i.e., for any k-tensor S, l-tensors T, and m-tensor U, we have $(S \otimes T) \otimes U = S \otimes (T \otimes U)$
- (c) Prove that for any linear map $f: V \to W$ and tensors S and T on W, we have $f^*(S \otimes T) = f^*S \otimes f^*T$.

Problem 2. Let V and W be vector spaces.

- (a) Prove that $\wedge : \Lambda^k(V) \times \Lambda^l(V) \to \Lambda^{k+l}(V)$ is bilinear
- (b) Prove that for $\wedge : \Lambda^k(V)$ and $\Lambda^l(V)$, we have $\omega \wedge \eta = (-1)^{kl} \eta \wedge \omega$. Hint: Show that there is a permutation $\tau \in S_{k+l}$ such that for any $v_1, \ldots, v_{k+l} \in V$, we have

$$\omega(v_1, \dots, v_k) \cdot \eta(v_{l+1}, \dots, v_{l+k}) = \eta(v_{\tau(1)}, \dots, v_{\tau(l)}) \cdot \omega(v_{\tau(l+1)}, \dots, v_{\tau(l+k)}),$$

and hence, given any permutation $\sigma \in S_{k+l}$, we have

$$\omega(v_{\sigma(1)},\ldots,v_{\sigma(k)})\cdot\eta(v_{\sigma(l+1)},\ldots,v_{\sigma(l+k)}) = \eta(v_{\tau(\sigma(1))},\ldots,v_{(\tau(\sigma(l))})\cdot\omega(v_{(\tau(\sigma(l+1))},\ldots,v_{(\tau(\sigma(l+k))})),$$
$$=\eta(v_{(\tau\circ\sigma)(1)}),\ldots,v_{(\tau\circ\sigma)(l)})\cdot\omega(v_{(\tau\circ\sigma)(l+1)},\ldots,v_{(\tau\circ\sigma)(l+k)})$$

where $\tau \circ \sigma$ is the composite permutation. What is $\operatorname{sgn} \tau$? Then recall that composing with τ (i.e., the operation $\sigma \mapsto \tau \circ \sigma$) is a bijection (with inverse $\sigma \mapsto \tau^{-1} \circ \sigma$), hence $\sum_{\sigma \in S_{k+l}} a_{\sigma} = \sum_{\sigma \in S_{k+l}} a_{\tau \circ \sigma}$ for any collection $\{a_{\sigma}\}_{\sigma \in S_{k+l}}$.

(c) Prove that for any linear map $f: V \to W$ and alternating tensors ω and η on W, we have $f^*(\omega \wedge \eta) = f^*(\omega) \wedge f^*(\eta)$.

Problem 3. Spivak 4-1

Problems. 4-1.* Let e_1, \ldots, e_n be the usual basis of \mathbb{R}^n and let $\varphi_1, \ldots, \varphi_n$ be the dual basis.

(a) Show that $\varphi_{i_1} \wedge \cdots \wedge \varphi_{i_k}$ $(e_{i_1}, \ldots, e_{i_k}) = 1$. What would the right side be if the factor (k + l)!/k!l! did not appear in the definition of \wedge ?

(b) Show that
$$\varphi_{i_1} \wedge \cdots \wedge \varphi_{i_k}(v_1, \ldots, v_k)$$
 is the determinant

of the $k \times k$ minor of $\begin{pmatrix} \cdot & 1 \\ \cdot \\ \cdot \\ \cdot \\ v_k \end{pmatrix}$ obtained by selecting columns

Problem 4. Show that for any vector space V and any $\varphi_1, \ldots, \varphi_k \in V^*$ and any $v_1, \ldots, v_k \in V$, we have $\varphi_1 \wedge \cdots \wedge \varphi_k(v_1, \ldots, v_k) = \det ([\varphi_i(v_j)]_{i,j=1}^k).$