Problem 1. Prove $d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^k \omega \wedge d\eta$ in the following cases: (i) ω is a 0-form, (ii) $\omega = dx^{i_1} \wedge \cdots \wedge dx^{i_k}$ and $\eta = dx^{j_1} \wedge \cdots \wedge dx^{j_l}$, (iii) the general case.

Problem 2. For any smooth function $f : \mathbb{R}^n \to \mathbb{R}$, find a differential form $\alpha \in \Omega^{n-1}(\mathbb{R}^n)$ such that $d\alpha = f dx^1 \wedge \cdots \wedge dx^n$.

Problem 3. Spivak 5-1

Problems. 5-1. If M is a k-dimensional manifold-with-boundary, prove that ∂M is a (k - 1)-dimensional manifold and $M - \partial M$ is a k-dimensional manifold.

Problem 4. Spivak 5-5

5-5. Prove that a k-dimensional (vector) subspace of \mathbb{R}^n is a k-dimensional manifold.

Problem 5. If $f : \mathbb{R}^n \to \mathbb{R}^m$, the graph of f is $\{(x, y) \in \mathbb{R}^n \times \mathbb{R}^m \mid y = f(x)\}$. Show that if f is smooth, then the graph of f is an n-dimensional manifold.