Problem 1. Tapp 1.6

EXERCISE 1.6. If all three component functions of a space curve γ are quadratic functions, prove that the image of γ is contained in a plane.

(Recall that a plane is a 2-dimensional affine subset of \mathbb{R}^3 , i.e., a subset defined by a single (not necessarily homogeneous) linear equation ax + by + cz = d, or equivalently a set of the form $\{\mathbf{p} + s\vec{u} + t\vec{v} \mid s, t \in \mathbb{R}\}$ for some $\mathbf{p}, \vec{u}, \vec{v} \in \mathbb{R}^3$).

Problem 2. Tapp 1.8

EXERCISE 1.8. Compute the arc length of $\gamma(t) = (2t, 3t^2), t \in [0, 1]$.

Problem 3. Tapp 1.9

EXERCISE 1.9. Let a, b > 0. Find the maximum and minimum speed of the ellipse $\gamma(t) = (a \cos t, b \sin t)$.

Problem 4. Tapp 1.16

EXERCISE 1.16. Let γ be a logarithmic spiral, as defined in Exercise 1.3 on page 6. Prove that the angle between $\gamma(t)$ and $\gamma'(t)$ is a constant function of t.

Problem 5. Let $\vec{x} = (0,2), \vec{y} = (3,4) \in \mathbb{R}^2$. Write \vec{x} as a sum of two vectors, one parallel to \vec{y} and the other orthogonal to \vec{y} .

Problem 6. Tapp 1.18

EXERCISE 1.18. Let $\mathbf{x}=(1,2,3) \in \mathbb{R}^3$ and let $\mathcal{V}=\text{span}\{(1,0,1),(1,1,0)\}$. Write \mathbf{x} as a sum of two vectors, one in \mathcal{V} and the other orthogonal to every member of \mathcal{V} .

Problem 7. Tapp 1.24

EXERCISE 1.24. If $t_0 \in I$ is the time at which the curve $\gamma : I \to \mathbb{R}^n$ is farthest from the origin, prove that $\gamma(t_0)$ is orthogonal to $\gamma'(t_0)$.

Here, assume that I is an *open* interval.

(Recall that the geometric meaning of $\gamma(t_0) \perp \gamma'(t_0)$ is that $\gamma'(t_0)$ is orthogonal to the vector connecting $\gamma(t_0)$ to the origin.)