Problem 1. Tapp 1.47

EXERCISE 1.47. Prove that the trace of every regular plane curve with constant nonzero signed curvature must equal a circle or a segment of a circle.

Problem 2. Find a plane curve $\gamma \colon \mathbb{R} \to \mathbb{R}^2$ whose angle function is $\theta(t) = 2t$.

Problem 3. Tapp 1.56 in the case where m and n have opposite parities (i.e., one is even, an one is odd).

EXERCISE 1.56. Let m, n be positive integers. Find the rotation index of the Lissajous curve $\gamma : [0, 2\pi] \to \mathbb{R}^2$ (see Fig. 1.26) defined as

FIGURE 1.26. The Lissajous curve $\gamma(t) = (\cos(5t), \sin(4t)), t \in [0, 2\pi]$

Again, you only need to consider the case where one of m and n is even and one is odd. Hint: What happens to the γ when you reflect it across the x or y axis? What happens to its signed curvature?

Problem 4. Tapp 1.62

EXERCISE 1.62. Calculate the curvature function and torsion function for the curve $\gamma(t) = (t, t^2, t^3), t \in \mathbb{R}$.

Hint: First prove the formula $\tau = \frac{\langle \gamma' \times \gamma'', \gamma''' \rangle}{|\gamma' \times \gamma''|^2}$ from Tapp Exercise 1.65.

Problem 5. Compute the torsion function of the helix $\gamma(t) = (\cos t, \sin t, t), t \in \mathbb{R}$.

Problem 6. Tapp 1.68

EXERCISE 1.68. Let $\gamma : I \to \mathbb{R}^3$ be a space curve, and let $t_0 \in I$ with $\kappa(t_0) \neq 0$. Let *P* denote the osculating plane at t_0 (translated to $\gamma(t_0)$). For $t \in I$ near t_0 , let $\beta(t)$ denote the point of *P* closest to $\gamma(t)$. Prove that γ and β have the same curvature at time t_0 .

Hint: Find an explicit formula for $\beta(t)$; note that $\vec{b}(t_0)$ is a normal vector to P.

Problem 7. Tapp 1.69

EXERCISE 1.69. Let $\gamma : I \to \mathbb{R}^3$ be a regular space curve (possibly with points where $\kappa = 0$ and hence where τ is undefined). *Prove or disprove*:

- (1) If the trace of γ lies in a plane, then τ equals zero everywhere it is defined.
- (2) If τ equals zero everywhere it is defined, then the trace of γ lies in a plane.