
Math 435: Lecture 42
April 26, 2024

Reference: Tapp, pp. Chapters 4 and 5

Topics:

• Examples of Gauss-Bonnet
– For the unit sphere S2, we have constant curvature K = 1, and area 4π, hence we find

that χ(S2) = 2.
– We can also compute it directly: for example, if we triangulate S2 as a tetrahedron,

we obtain χ = 4− 6 + 4 = 2, or if as an octahedron, we obtain χ = 8− 12 + 6 = 2.
– A useful fact is that you can actually compute the Euler characteristic using any

partition into polygons, not just triangles. The reason is that you can always subdivide
a polygon into triangles, and it won’t change the Euler characteristic, since each time
we connect two corners, we are adding both a face and an edge.

– Hence, we can also compute χ(S2) with a cube 6− 12 + 8 = 2.
– Next, for the torus, it is harder to compute the total Gaussian curvature directly. But

we can triangulate (or “polygonate”) it using a single face, two edges, and one vertex,
hence ξ = 1− 2 + 1 = 0. Thus the total Gaussian curvature of a torus is 0.

– There is a second way to see this, which is by attaching a handle to the sphere.
– That is, we consider the cylinder {(x, y, z) | x2 + y2 = 1 and z ∈ [0, 1]}. It has a polyg-

onation with 1 face, 3 edges, and 2 vertices (hence χ = 0).
– We can now start with a polygonated surface, remove two faces, and glue on a cylinder

along the two resulting boundaries; altogether, we will have removed two faces, and
added one face and one edge, hence decreased χ by 2.

– If we add a handle to S2, we obtain a torus, so we see again that χ of the torus is 2.
– In general, the genus g(S) of a compact surface S ⊂ R3 is its number of handles

(equivalently, the number of “cuts” that need to be made in order to turn it into a
sphere); hence a surface has genus 0, a torus has genus 1, and if we attach another
handle, we get a surface of genus 2 (a kind of “double torus”).

– Since χ(S2) = 2, we see in general that the Euler characteristic of a genus g surface is

χ = 2− 2g.

– Note that besides the two special cases g = 0 (the sphere) and g = 1 (the sphere) the
total Gaussian curvature is always negative.

• Gauss-Bonnet with boundary
– The proof of Gauss-Bonnet involves introducing two generalizations of it, which are

interesting in their own right.
– The first concerns surfaces with boundary, and says that if S is a surface with boundary,

then

(4)

∫
S

K +

∫
∂S

κg = 2πχ(S).

(Note that κg in principle depends on an orientation of S, but switching the orientation
changes both the direction of the induced orientation on the boundary curve, and the
sign of κg, so these will cancel out.)

– Note that if ∂S = ∅, this recovers the old formula.
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– In particular, this shows that the Euler characteristic of a surface with boundary is
also independent of the triangulation (which we didn’t know yet).

– The second variant is about a polygonal region R on a surface S – i.e., it is the case
where we have not only boundaries, but corners. In this case, the formula is:

(5)

∫
R

K +

∫
∂R

κg +
∑
i

αi = 2π

where the sum
∑
i αi is over the external angles at the corners of the polygon. Note

that we might also write the right side as 2πχ(R) since the Euler characteristic of a
disk is 1− 1 + 1 = 1.

– Compare this with the Umlaufsatz:
∫ b
a
κs(t) +

∑n
i=1 αi = 2π.

– (As stated, this version isn’t quite a generalization of (4), since a whole surface will
not in general be a polygonal region, but one can formulate a more general version of
the theorem which really is a generalization of (4), see Tapp Theorem 6.8.)

• Geodesic polygons
– Though the polygonal version (5) of Gauss-Bonnet will mainly be a tool for us to

prove the version (4) for a whole surface, it is actually very interesting in its own right,
especially in the case of geodesic polygons, i.e., polygons whose edges are geodesics, so
that the term κg vanishes.

– In the plane, where K = 0, it then just reduces to the formula
∑
i αi = 2π, or the

equivalent version with internal angles
∑
βi = (n− 2)π.

– Another interesting example to consider is that of spherical geometry, i.e., the study
of figures formed out of great circles on the sphere.

– Here, we see, for example, that the usual angle sum of π for a triangle is increased
(the triangles are “fatter”), and moreover the defect

∫
R
K is proportional to the area

of the triangle.
(In particular, very small triangles have angle sum nearly π, as on a small scale, any
surface is “nearly flat”.)

– There is a third famous case – called hyperbolic geometry – which is that of a surface
with constant negative rather than positive Gaussian curvature, K = −1.

– It is difficult to come across such surfaces in R3, but there is a famous “abstract”
surface with this property called the hyperbolic plane, which we do not have time to
explain now.

– In any case, here, the triangles are instead thinner, and the defect again is proportional
to the area of the triangle.

– The dutch artist M.C. Escher made some famous and beautiful artistic renditions of
the hyperbolic plane, which you should look at.

• Sketch of the proof
– Proving the Gauss-Bonnet theorem has two steps: first prove (5), and then use that

to prove (4).
– The proof of (5) is the more difficult but (somewhat) less interesting part. There are

two basic ideas involved: (i) use Stokes’ theorem to relate the integral
∫
R
K over the

interior to the integral
∫
κg over the boundary, and (ii) use a variant of the argument

from the Umlaufsatz (including the part about smoothing the corners) to relate the
integral

∫
κg to a “total change of angle”, which again comes out to be 2π.
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– The fun part of the proof is deducing the Gauss-Bonnet theorem (4) for a whole surface,
assuming the version (5) about polygonal regions.

– Choose a finite triangulation T1, . . . TF of the given surface(-with-boundary) S.
– By assumption the equation (5) holds with R = Ti for each i.
– Let us sum both sides of this equation over all i. On the right-hand side, we just get

2πF .
– The first term on the left-hand side simply adds up to

∫
S
K.

– The sum of the terms
∫
∂Ti

κg give the sum over all the edges e of all the triangles of∫
e
κg. However, each interior edge (i.e., edge which is not on a boundary) is counted

twice with opposite signs (because it has the opposite induced orientation from the
two adjacent triangles), hence these cancel out. We are thus left with

∫
∂S
κg.

– Finally, the terms
∑
i αi add up to the sum of all the external angles of all the vertices

of all the triangles.
– Recall that the external angle αi is π − βi, where βi is the internal angle.
– Hence, we can write this as Aπ−

∑
βi, where A is the total number of angles, and the

second term is the sum of all the internal angles (at all vertices).
– Now the sum of all the internal angles at an interior vertex is 2π, whereas at an

exterior vertex (i.e., one lying on ∂S), it is just π. Hence
∑
βi = 2πVint + πVext.

– On the other hand, the number angles at a given interior vertex v is simply the number
of edges Ev emanating from V , whereas at an exterior vertex it is Ev−1. Hence, since
each edge occurs at two vertices, summing them all up gives A = 2E − Vext.

– Hence, we have Aπ −
∑
βi = (2E − Vext)π − (2πVint + Vext) = 2π(E − V ).

– Adding everything up, we thus have∫
S

K +

∫
∂S

κg + 2π(E − V ) = 2πF,

which is the Gauss-Bonnet formula.
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