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Math 435: Lecture 1
January 8, 2024

Reference: Spivak, pp. 1-10

Topics:

• Rn (Spivak p. 1)
– Vector space structure
– Norm ‖x‖ and inner product 〈x, y〉 and their basic properties (Spivak Theorems 1-1

and 1-2)
– Linear maps T : Rn → Rm, their representing matrices, composition.

• Subsets of Euclidean space
– Closed and open rectangles in Rn
– Open and closed sets
– Interior, exterior, and boundary points of a set
– Open covers, compactness
– Heine-Borel (compact if and only if closed and bounded – Spivak (1-3)-(1-7) and Prob-

lem 1-20)

Exercises:

• Spivak 1-7
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Math 435: Lecture 2
January 10, 2024

Reference: Spivak, pp. 7-33

Topics:

• Heine-Borel (compact if and only if closed and bounded – Spivak (1-3)-(1-7) and Problem
1-20)

– Spivak does the “⇐” direction in in three steps:
– (i) A closed finite interval is compact

(This part makes essential use of the completeness of R – i.e., the least upper bound
property.)

– (ii) The product of compact sets is compact; hence a closed rectangle is compact
(This is proven using the so-called “tube lemma”, Spivak 1-4)

– (iii) A closed subset of a compact set is compact
(This part is easy!)

– The “⇒” direction is easy and is left as an exercise (Problem 1-20)
• A function f : A→ Rm (with A ⊂ Rn) is continuous if and only if the preimage of any open

set is open (Spivak Theorem 1-8)
– Here, “continuous” means that limx→a f(x) = f(a) for all a ∈ A, or equivalently: for

all ε > 0 there exists a δ > 0 such that for all x ∈ A with |x− a| < δ, we have
|f(x)− f(a)| < ε.

– This is equivalent to each component of f being continuous (Spivak Problem 1-24).
• The continuous image of a compact set is compact (Spivak Theorem 1-9)
• Differentiation

– Differentiability of functions f : A → Rm in terms of linear approximation (Spivak
Theorem 2-1 and the preceding discussion)

– Derivatives in terms of component functions (Spivak Theorem 2-3 (3))
– Jacobian matrix in terms of partial derivatives; continuously differentiable functions

(Spivak Theorems 2-7 and 2-8)
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Math 435: Lecture 3
January 12, 2024

Reference: Spivak, pp. 7-39

Topics:

• A little more on derivatives
– Review of the three perspectives on the derivative: linear approximation, matrix of

partial derivatives, directional derivative
– C∞ (smooth) functions and commutativity of partial derivatives (Spivak 2-5)

Note: we will be mainly interested in smooth (hence continuously differentiable by
Spivak Problem 2-1) functions.

– Derivative at a maximum or minimum (Spivak 2-6)
– Chain rule for derivatives (Spivak 2-2) and partial derivatives (Spivak 2-9)

• The all-important inverse function theorem (Spivak 2-11)
– The easy direction:

Exercise: suppose f : Rn → Rn is differentiable and, for some a ∈ Rn, there exists
open subsets V ⊂ Rn containing f(a) and W ⊂ Rn containing f(a) such that f : V →
W has a differentiable inverse f−1 : W → V .
Then det f ′(a) 6= 0, and in fact (f−1)′ (f(a)) = [f ′(a)]−1.

– Proof in the easy case n = 1.
– Warning: inverse can still exist even if det f ′(a) = 0.

Example: f : R→ R defined by f(x) = x3.
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Math 435: Lecture 4
January 17, 2024

Reference: Spivak, pp. 40-43

Topics:

• Review of some properties of real numbers
– Besides all of the usual properties of the real numbers (associativity, commutativity,

distributivity, the properties of 1 and 0, and the basic properties of the ordering a < b),
the real numbers have one more fundamental property:

– The least upper bound property : any set of real numbers S which has an upper bound
(i.e., a number M such that x ≤M for all x ∈ S) has a least upper bound or supremum
(i.e., an upper bound M such that M ≤M ′ for any other upper bound M ′).

– This implies the analogous “greatest lower bound” (or infimum) property. (Exercise!)
– Some consequences:
– (i) Any closed and bounded set of reals has a maximal element.
– (ii) Any open interval of real numbers contains a rational number.

(This uses three intermediate facts: (iii) the set of natural numbers is not bounded,
(iv) for any positive real number, there is a smaller positive rational number, (v) if
b− a > 1, then there is a rational number between a and b.)

– The least upper bound property is also used in the proof other basic facts of calculus,
such as the intermediate value theorem.

• Sample application of the inverse function theorem: the implicit function theorem (Spivak
2-12)

– (The theorem is nice, but it is really the method of proof that is important, rather
than theorem itself.)

– The example of the circle
– Proof in the case of functions f : R2 → R
– Main idea: figure out how to turn f into a function R2 → R2 with det f ′(a, b) 6= 0 so

that you can apply the inverse function theorem.

Exercises:

(1) Suppose f : Rn → Rm is smooth and that the linear map Df(a) is surjective for some
a ∈ Rn. Show that there is some open subset of Rm containing f(a) which is in the image
of f .

(2) Suppose f : Rn → Rm is smooth and that the linear map Df(a) is injective for some a ∈ Rn.
Show that there is some open subset of Rn containing a on which f is injective.
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Math 435: Lecture 5
January 19, 2024

Reference: Spivak, pp. 34-49

Topics:

• A few more remarks on the inverse function theorem:
– The theorem still holds if C1 is replaced by Ck for any k (including k =∞): i.e., if the

original function f is Ck, then the inverse to f guaranteed by the theorem is also Ck
(see Spivak, Addendum 1)c

– Some useful terminology: a map Rm ⊃ U
f−→ V ⊂ Rn is a Ck-diffeomorphism if it is

Ck and has a Ck-inverse. (Spivak p. 109)
f is a local Ck-diffeomorphism at a ∈ U if there is some open set a ∈ U ′ ⊂ U such that
f(U ′) is open and the restriction f : U ′ → f(U ′) is a Ck-diffeomorphism.

– Thus the inverse function theorem says: if Df(a) is invertible, then f is a local diffeo-
morphism at a.

– Now an example: let U = R× (0, 1) ⊂ R2 and V = {~x ∈ R2 | 0 < |~x| < 1}.
Let f : U → V be defined by f(x, y) = (y cosx, y sinx).
We have

f ′(x, y) =

[
−y sinx cosx
y cosx sinx

]

and hence det f ′(x, y) = −y(sin2 x+ cos2 x) = −y 6= 0.
Hence by IFT, f is a local diffeomorphism at every point of U .
However, f is clearly not a diffeomorphism, since it is not injective.
Rather, f : U → f(U) = V − {(y cos t, y sin y) | y ∈ (0, 1)} is a diffeomorphism with
U = (t, t+ 2π)× (0, 1) for any t ∈ R.

• Definition of the integral of a bounded function defined on a closed rectangle A ⊂ Rn
– Partitions of closed rectangles into subrectangles (Spivak p. 46)
– Volumes of rectangles v(R), and lower and upper sums L(f, P ) =

∑
SmS(f) · v(S)

and U(f, P ) =
∑
SMS(f) · v(S) (p. 47)

– If P ′ refines P , then L(f, P ) ≤ L(F, P ′) and U(F, P ′) ≤ U(f, P ). (Spivak 3-1)
– If P and P ′ are any two partitions, then L(f, P ′) ≤ U(f, P ) (Spivak 3-2)
– f : A→ R is integrable if it is bounded and supP L(f, P ) = infP U(f, P ).

This number is called the integral of f overA, denoted
∫
A
f or

∫
A
f(x1, . . . , x

n) dx1 · · · dxn

(or
∫ b
a
f in the case n = 1). (Spivak p. 48)

– A bounded f is integrable if and only if for every ε > 0 there is a partition P with
U(f, P )− L(f, P ) (Spivak 3-3)

– Examples: (i) constant function and (ii) f : [0, 1]× [0, 1]→ R defined by f(x, y) = 0 if
x ∈ Q and f(x, y) = 1 else

Exercises:

(1) Spivak 3-1
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Math 435 lecture 5 January 19, 2024

(2) Spivak 3-2
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Math 435: Lecture 6
January 22, 2024

Reference: Spivak, pp. 50-51

Topics:

• Basic facts about integrals (Spivak, problems on p. 49 and Problem 3-14):
– If f and g are integrable, then so is f + g, and

∫
A
f + g =

∫
A
f +

∫
A
g

– If f is integrable, then so is c · f , and
∫
A
c · f = c ·

∫
A
f

– If f and g are both integrable and f ≤ g, then
∫
A
f ≤

∫
A
g

– If f is integrable, then so is f+ = max(0, f) and f− = min(0, f)
– If f is integrable, then so is |f |, and |

∫
A
f | =

∫
A
|f |

– If f and g are integrable, then so is f · g.
– The fundamental theorem of calculus: if f is continuous, then F (x) =

∫ x
a
f is differ-

entiable and F ′ = f .
• Measure zero

– A set A ⊂ Rn has measure 0 if for every ε > 0, there is a cover {U1, U2, . . . ,} by closed
(or equivalently, open) rectangles with

∑
i v(Ui) < ε.

– A subset of a set with measure 0 has measure 0
– Finite sets have measure 0.
– Countable sets have measure 0 (take v(Ui) < ε/2i)
– Q has measure 0 (zigzag trick)
– Theorem 3-4: A countable union of measure 0 sets has measure 0 (combine previous

two tricks)

Exercise: Prove the above basic properties of integrals.

8



Math 435: Lecture 7
January 24, 2024

Reference: Spivak, pp. 51-56

Topics:

• Content 0 : same thing as measure 0 but with finite covers.
– Theorem 3-6: Compact and content 0 implies measure 0

(Use open rectangles!)
– Theorem 3-5: [0, 1] does not have content 0 (hence does not have measure 0 since it is

compact); in fact, any finite cover has
∑
i Ui ≥ b− a

– However, [0, 1] ∩ Q does not have content 0 (since a finite union of closed intervals is
closed, and [0, 1] ∩Q has closure [0, 1]).

– The above basic facts about integrals
• Integrability and continuity

– Theorem 3-8: A bounded function f : A→ R on a closed rectangle is integrable if and
only if the set B = {x | f is not continuous at x} has measure zero.

– Proof of the simple special case B = ∅ and under the assumption that f is uniformly
continuous, meaning for all ε > 0 there is a δ > 0 such that |~x− ~y| < δ(ε) implies
|f(~x)− f(~y)| < ε for any x, y ∈ A (in fact, this is automatically true for any continuous
function on a compact set):
Fix ε > 0. Then for any partition P such that each sub-rectangle has diameter <
δ(ε/v(A)), we have U(f, P )− L(f, P ) < (ε/v(A)) · v(A) = ε.

• Integration over more general bounded domains
– The characteristic function χC(x) for C ⊂ Rn which is 1 for x ∈ C and 0 else.
– For C ⊂ Rn a bounded domain (so C ⊂ A for some rectangle A) and a bounded

function f : C → R, we define
∫
C
f =

∫
A
f · χC (provided f · χC is integrable – hence

for example if both f and χC are integrable).

Exercises:

(1) Spivak 3-9

(2) Spivak 3-8
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Math 435: Lecture 8
January 26, 2024

Reference: Spivak, pp. 56-62

Topics:

• Jordan-measurable sets
– Theorem 3-9: the function χC is integrable if and only if the boundary of C has

measure 0 (hence content 0, since a boundary is always closed, and C is bounded).
(The reason is that the points of discontinuity of C are exactly the boundary points.)

– Such a set C is called Jordan-measurable and
∫
C

1 is its (n-dimensional) content or
(n-dimensional) volume (or, in 1 and 2 dimensions, length or area).

(Warning: not every open set is Jordan-measurable; later, we will introduce a generalized
version of integration which is defined for bounded functions on any open set.)

• Fubini’s theorem (3-10): if f : A×B → R is integrable, and gx : B → R defined by gx(y) =
f(x, y) is integrable for all x ∈ A and we define G : A→ R by G(x) =

∫
B
gx, then we have∫

A×B f =
∫
A
G =

∫
A

(∫
B
f(x, y) dy

)
dx.

– Spivak proves a slightly stronger version of this theorem.
– The hypothesis of the theorem holds whenever f is continuous.
– Since integrability is not affected by changing the value of a function at finitely many

points, the theorem still works if gx is integrable for all but finitely many x ∈ A.

– Of course, the same proof gives
∫
A×B f =

∫
B

(∫
A
f(x, y) dx

)
dy.

– Applying the theorem repeatedly, we have for A = [a1, b1]×· · ·× [an, bn] and f : A→ R
sufficiently nice (e.g., continuous) that

∫
A
f =

∫ bn
an

(
· · ·
(∫ b1

a1
f(x1, . . . , xn) dx1

)
· · ·
)

dxn.

Thus, in this case, multivariable integrals are reduced to single-variable ones.
– The proof:

Any partition PA of A and PB of B gives a partition PA × PB of A × B with sub-
rectangles SA × SB where SA and SB are sub-rectangles of PA and PB .
For any fixed SA and x ∈ SA, we have mSA×SB

≤ mSB
(gx) and hence∑

SB
mSA×SB

(f)v(SB) ≤
∑
SB
mSB

(gx)v(SB) = L(gx, PB) ≤
∫
B
gx = G(x) and hence∑

SB
mSA×SB

(f)v(sB) ≤ mSA
(G). Hence:

L(f, PA × PB) =
∑
SA,SB

(f)v(sA)v(sB) ≤
∑
SA
mSA

(G)v(SA) = L(G,PA) ≤
∫
A
G.

The same argument gives
∫
A
G ≤ U(f, PA × PB), hence we have L(f, PA × PB) ≤∫

A
G ≤ U(f, PA × PB) and it follows that

∫
A×B f =

∫
A
G.

Exercises:

(1) Spivak 3-15

(2) Spivak 3-26
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Math 435: Lecture 9
January 29, 2024

Reference: Spivak, pp. 63-64

Topics:

• Partitions of unity
– For a set A ⊂ Rn and an open cover O of A, a C∞ partition of unity for A is a collection

Φ of smooth functions ϕ defined on an open neighbourhood of A such that
(1) 0 ≤ ϕ(x) ≤ 1 for x ∈ A
(2) each x ∈ A has an open neighbourhood V such that all but finitely ϕ are 0 on V
(3)

∑
ϕ∈Φ ϕ(x) = 1 for all x ∈ A.

We say Φ is subordinate to O if moreover
(4) for each ϕ ∈ Φ there is some U ∈ O such that ϕ = 0 outside some closed subset of
U . (One says that ϕ is supported on U .)

– Theorem 3-11: for any A and O, there exists partition of unity for A subordinate to
O.

– The main ingredient in the proof is the existence of smooth bump functions: for any
open U ⊂ Rn and any compact K ⊂ U , there is a smooth function f supported in U
with f = 1 on K.
This is constructed in Spivak Problem 2-26.
The starting point is f : R → R defined by f(x) = e−1/x for x > 0 and f(x) = 0 for
x ≤ 0.
Then g(x) = f(x)/(f(x) + f(1− x)) is zero for x ≤ 0 and 1 for x ≥ 1.

– The proof starts with a couple of reductions: first, any partition of unity for an open
neighbourhood of A is also a partition of unity for A; hence, we may assume A is open.
Next, we reduce to the case where A is compact, using that, for any open set U , there
is a sequence of compact sets K1 ⊂ K2 ⊂ · · · with

⋃
iKi = U and each Ki is contained

in the interior of Ki+1.
– Here is the proof when A is compact (using the existence of bump functions):

For each x ∈ A, choose an open set Ux ∈ O, and an open set Vx and compact set Kx

with x ∈ Vx ⊂ Kx ⊂ Ux.
Since A is compact, it is covered by finitely many of the Vx, say Vx1

, . . . , VxN
.

Let ψi be a smooth bump function supported on Uxi
and equal to 1 on Ki.

Then ψ1 + · · ·+ ψN > 0 on the open set U = V1 ∪ · · · ∪ VN containing A.
Now define ϕi on U by letting ϕi = ψi/(ψ1 + · · ·ψN ); note that ϕi may not be defined
on all of Ui since the denominator can vanish somewhere on Ui.
Hence, finally, let f be a bump function supported on U and equal to 1 on A. Then
each fϕi is defined on all of Ui, and Φ = {f · ϕ1, . . . , f · ϕN} is the desired partition
of unity.
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Math 435: Lecture 10
January 31, 2024

Reference: Spivak, pp. 65-66

Topics:

• First application of partition of unity: integration on arbitrary open sets
– Our current definition of

∫
A
f for arbitrary A only works if A is bounded and bdA has

measure 0.
– We would like a definition that works for arbitrary open sets A; but even a bounded

open set may not be non-measure-0 boundary.
(Example: Problem 3-11)
We would also like to be able to integrate unbounded functions.

– First, a reminder: a series
∑∞
i=1 ai converges absolutely if

∑∞
i=1|ai| converges.

– In this case, every reordering
∑∞
i=1 aki of the series converges and has the same value.

– (Moreover, the Riemann series theorem says that if
∑∞
i=1 ai does not converge abso-

lutely, then any S ∈ R, there is a reordering aki such that
∑∞
i=1 aki = S.)

– Let A be open, let O be an open cover of A with U ⊂ A for each U ∈ O and let Φ be
a partition of unity subordinate to O.
Suppose f : A→ R is continuous outside of a set of measure 0, so that each

∫
A
ϕ · |f |

exists.
– We say that f is integrable in the extended sense if the series

∑
ϕ∈Φ ϕ ·

∫
|f | converges,

and hence Σϕ∈Φ

∫
A
ϕ · f converges absolutely, and we define

∫
A
f to be its sum.

– (Though the convergence of
∑
ϕ∈Φ ϕ ·

∫
|f | is more than is needed to guarantee the ab-

solute convergence of Σϕ∈Φ

∫
A
ϕ·f , it is needed to ensure that this value is independent

of the chosen partition of unity Φ, as is shown in Problem 3-38.)
– Theorem 3-12:

(1)
∫
A
f is independent of the cover O and the partition of unity Φ.

(2) If A and f are bounded (and A is open and f is continuous outside a set of measure
0), then

∫
A
f exists.

(3) This agrees with the old definition of
∫
A
f when they are both defined.

Exercises:

(1) Spivak 3-36

(2) Spivak 3-38
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Math 435: Lecture 11
February 2, 2024

Reference: Spivak, pp. 66-76

Topics:

• Change of variables

– Change of variables in one dimension:
∫ b
a
f(g(x))g′(x) dx =

∫ g(b)
g(a)

f(u) du (“set u =

g(x), then du = g′(x) dx”).
(Suppose f is continuous and g is continuously differentiable.)

– More concisely:
∫ g(b)
g(a)

f =
∫ b
a

(f ◦ g) · g′.
– Proof: if F ′ = f , then (F ◦ g)′ = (f ◦ g) · g′, so the left side F (g(b))− F (g(a)) and the

right side is (F ◦ g)(b)− (F ◦ g)(a).
– Assuming g : (a, b)→ (g(a), g(b)) is a diffeomorphism, this can be written as

∫
g((a,b))

f =∫
(a,b)

(f ◦ g) · |g′|.
– In higher dimensions, we have:

Theorem 3-13: if A ⊂ Rn is open and g : A → g(A) ⊂ Rn is a diffeomorphism, and
f : g(A)→ R is integrable, then

∫
g(A)

f =
∫
A

(f ◦ g)|det g′|.

– Example: integrating in polar coordinates
– The proof has several steps.
– One first uses partitions of unity to reduce to the simple case is in which (i) A is a

rectangle, and (ii) f is the constant function 1.
– This case is proven by induction on n, the base case n = 1 being already known.

For the induction step when n > 1, there is a further reduction using the inverse func-
tion theorem to the case in which (iii) gn(x) = xn, hence g(x) = (g1(x), . . . , gn−1(x), xn).
Now the claim follows from Fubini’s theorem. Write A = B × [an, bn] and define
gxn(x1, . . . , xn−1) = (g1(x1, . . . , xn), . . . , gn−1(x1, . . . , xn)) for each xn ∈ [a, b], we have
by induction that

∫
g(B)

1 =
∫
B
|det g′xn |.

But we also have det g′xn(x1, . . . , xn−1) = det g′(x1, . . . , xn) and hence, by Fubini:∫
g(A)

1 =

∫
[an,bn]

∫
g(B×xn)

1

=

∫
[an,bn]

(∫
gxn (B)

1
)

dxn

=

∫
[an,bn]

(∫
B

|det g′xn |
)

dxn

=

∫
[an,bn]

(∫
B

|det g′(x1, . . . , xn)|dx1 . . . dxn
)

dxn

=

∫
A

|det g′|.

– It remains to explain how the reductions (i), (ii), (iii) are carried out.
14



Math 435 lecture 11 February 2, 2024

– The reduction (i) involves a computation which looks like∫
g(A)

f =
∑
ϕ∈Φ

∫
g(A)

ϕ · f =
∑
ϕ∈Φ

∫
A

(ϕ ◦ g) · (f ◦ g) · |det g′| =
∫
A

(f ◦ g) · |det g′|

where Φ is a partition of unity (which we can take to be subordinate to a cover by
rectangles).
In fact, this shows that it even suffices to prove the theorem in an arbitrarily small
rectangle around each point in A.

– The reduction (ii) is a direct computation from the definition of the integral using,
roughly speaking, that that

∑
SmS(f)χS ≤ f ≤

∑
SMS(f)χ(S) for any partition P .

– For the reduction (iii), an easy computation shows that, if the theorem holds for a
given diffeomorphism g1 : A → g1(A) and for a second diffeomorphism g2 : g1(A) →
g2(g1(A)), then it is also true for g2 ◦ g1 : A→ g2(g1(A)).
Now fix g : A→ g(A), and a ∈ A.
If T is the linear transformation Dg(a), then (T−1 ◦ g)′(a) = I by the chain rule, and
it suffices to prove the claim for T−1 ◦ g since g = T ◦ (T−1 ◦ g), and since we already
proved the theorem for linear transformations.
In other words, we may assume g′(a) = I.
Now define h : A→ Rn by h(x) = (g1(x), . . . , gn−1(x), xn). Then deth′(a) = det I 6= 0,
hence h : U → h(U) is a diffeomorphism on some open neighbourhood U around a.
Defining k : h(U)→ Rn by k(y) = (y1, . . . , yn−1, gn(h−1(y))), we then have g = k ◦ h,
and hence it suffices to prove the claim for h and k, which are both of the desired form.

• Multilinear maps/tensors
– A multilinear map on a vector space V (over R) is a function T : V k → R which

is linear in the i-th input whenever all the other inputs are held constant (for any
i = 1, . . . , k). In other words, given any vj ∈ V for all j 6= i, the function V → R given
by vi 7→ T (v1, . . . , vn) is linear.

– Spivak also calls a multilinear map V k → R a k-tensor. (Note: it would be more usual
to call it a (k, 0)-tensor, but this abbreviation is reasonable since we will not be dealing
with (k, l)-tensors for any l > 0.)

– T k(V ) is the set of all tensors over V ; it is a vector space under pointwise addition
and scalar multiplication.

– There is an operation ⊗ : T k(V )×T l(V )→ T k+l(V ) defined by (S⊗T )(v1, . . . , vk+l) =
S(v1, . . . , vk) · T (vk+1, . . . , vk+l).

– Exercise: The operation ⊗ is bilinear and associative.
– By associativity, we may as usual omit parentheses and write S1 ⊗ · · · ⊗ Sm.
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Math 435: Lecture 12
February 5, 2024

Reference: Spivak, pp. 76-77

Topics:

• Some example of vector spaces
– Main example: linear subspaces of Rn
– The set of all Ck functions on a set U ⊂ Rn (this is infinite-dimensional!)
– The set of all polynomials in n variables (also infinite-dimensional)
– The set of all degree d polynomials in n variables (finite-dimensional)
– Example from last time: the set T kV of all k-tensors on V , i.e., multilinear maps
V k → R

• The axioms for a vector space:
(i) associativity and commutativity of addition

(ii) existence of the zero vector
(iii) existence of additive inverses
(iv) associativity of scalar multiplication
(v) distributivity of scalar multiplication
(vi) 1 · v = v

• From last time: Exercise: The operation ⊗ is bilinear and associative.
• By associativity, we may as usual omit parentheses and write S1 ⊗ · · · ⊗ Sr.
• The dual space and tensors

– Note: T 1(V ) is just the dual space V ∗.
– Recollection of dual bases: if V is a (finite-dimensional) vector space over R, then for

any basis v1, . . . , vn of V , there is a unique basis ϕ1, . . . , ϕn of V ∗ with ϕi(vj) = δij
called the dual basis.
(And conversely, any basis of V ∗ is dual to a unique basis of V .)
(δij is the Kronecker delta symbol, which is defined to be 1 if i = j and 0 if i 6= j.)

– Theorem 4-1: if v1, . . . , vn is a basis for V with dual basis ϕ1, . . . , ϕn of V ∗, then the
set of all k-fold tensor products ϕi1 ⊗ · · · ⊗ ϕik (with i1, . . . , ik ∈ {1, . . . , n}) is a basis
for T k(V ), which therefore has dimension nk.

– The proof:
First observation: ϕi1 ⊗ · · · ⊗ ϕik(vj1 , . . . , vjk) = δi1,j1 · · · δik,jk .
Second observation: T =

∑n
i1,...,ik=1 T (vi1 , . . . , vik)ϕi1 ⊗ · · · ⊗ ϕik

(Applying both sides to an arbitrary input (w1, . . . , wk) and expressing each wi as
wi =

∑n
j=1 ai,jvj , we get

∑n
j1,...,jk=1 a1,j1 , . . . , ak,jkT (vj1 , . . . , vjk)).

Third observation: if
∑n
i1,...,ik=1 ai1,...,ik ϕi1 ⊗ · · · ⊗ ϕik = 0, then by applying this to

vi1 , . . . vik , we obtain ai1,...,ik = 0.
– Given a linear map f : V → W , there is an induced map f∗ : T k(W ) → T k(V ) given

by f∗T (v1, . . . , vk) = T (f(v1), . . . , f(vk)).

Exercises:

• Check that T k(V ) satisfies the axioms of a vector space.
• The operation ⊗ is bilinear and associative.
• f∗(S ⊗ T ) = f∗S ⊗ f∗T

16



Math 435: Lecture 13
February 7, 2024

Reference: Spivak, pp. 77-79

Topics:

• Inner products are examples of 2-tensors
– An inner product on a vector space V is a symmetric, positive-definite bilinear map
T ∈ T 2(V ).

– Any (finite-dimensional) inner product space has an orthonormal basis (by the Gram-
Schmidt process), and is thus isomorphic to Rn with the standard inner product.

• Alternating k-tensors
– A k-tensor ω is alternating if switching two of the arguments in ω(v1, . . . , vk) changes

the sign of the result.
– Example: det ∈ T n(Rn); it is the unique alternating n-tensor with det(e1, . . . , en) = 1.
– We write Λk(V ) ⊂ T k(V ) for the subspace consisting of alternating k-tensors.
– Recall the sign sgnσ of a permutation σ ∈ Sk of {1, . . . , k}, which is (−1)N where N

is the number of pairs 1 ≤ i < j ≤ k with σ(j) < σ(i) (or equivalently, the number of
transpositions performed to produce σ).

– For T ∈ T k(V ), we define Alt(T ) by Alt(T )(v1, . . . , vk) = 1
k!

∑
σ∈Sk

sgnσ·T (vσ(1), . . . , vσ(k)).

Here, Sk+l is the set of permutations of {1, . . . , k + l}, i.e., bijections {1, . . . , k + l} →
{1, . . . , k + l}.

– (Compare: detA =
∑
σ∈Sk

sgnσ ·A1,σ(1), . . . , Ak,σ(k).)

– Theorem 4-3: (1) Alt(T ) ∈ Λk(V ), (2) if ω ∈ Λk(V ), then Alt(ω) = ω, (3) Alt(Alt(T )) =
Alt(T ).

• The wedge product

– ∧ : Λk(V )× Λl(V )→ Λk+l(V ) is defined by ω ∧ η = (k+l)!
k!l! Alt(ω ⊗ η).

– The strange coefficient makes various formulas work out nicer later on.
For now, note that for ω, η ∈ Λ1(V ) = T 1(V ) = V ∗, we have (ω∧η)(u, v) = ω(u)η(v)−
η(u)ω(v).

17



Math 435: Lecture 14
February 9, 2024

Reference: Spivak, pp. 79-84

Topics:

• The wedge product
– ∧ : Λk(V )× Λl(V )→ Λk+l(V ) is defined by ω ∧ η = k!l!

(k+l)!Alt(ω ⊗ η).

– The strange coefficient makes various formulas work out nicer later on.
For now, note that for ω, η ∈ Λ1(V ) = T 1(V ) = V ∗, we have (ω∧η)(u, v) = ω(u)η(v)−
η(u)ω(v).

– Exercise: Some basic facts about the wedge product:
(i) ∧ is bilinear
(ii) ∧ is “graded-commutative”: ω ∧ η = (−1)klη ∧ ω

(iii) f∗(ω ∧ η) = f∗(ω) ∧ f∗(η)
– ∧ is also associative; in fact, we have (Theorem 4-4): (ω ∧ η) ∧ θ = ω ∧ (η ∧ θ) =

(k+l+m)!
k!l!m! Alt(ω ⊗ η ⊗ θ)

– The proof is more difficult then the above facts; it requires two lemmas:
– Lemma 1: If S ∈ T k(V ) and T ∈ T l(V ) and Alt(S) = 0, then Alt(S ⊗ T ) = Alt(T ⊗
S) = 0.

– Lemma 2: Alt(Alt(ω ⊗ η)⊗ θ) = Alt(ω ⊗ η ⊗ θ) = Alt(ω ⊗Alt(η ⊗ θ)).
– The theorem follows from Lemma 2 which follows from Lemma 1
– Proof of Lemma 1 when k = 2:

Suppose S ∈ T 2(V ) and 0 = Alt(S)(v, w) = 1
2 (S(v, w)− S(w, v)) for all v, w.

We have Alt(S ⊗ T )(v1, . . . , vl+2) =
∑
σ sgnσ · S(vσ1, vσ2)T (vσ3, . . . , vσ(l+2)).

But now for every σ there is an accompanying permutation σ′ = σ(12) with the
opposite sign; since S(v, w) = S(w, v), the sum breaks up into two parts which are the
same but with opposite sign.

– Again, by associativity, we may as usual omit parentheses and write ω1 ∧ · · · ∧ ωr.
• The dimension of Λk(V ).

– Theorem 4-5: if v1, . . . , vn is a basis for V with dual basis ϕ1, . . . , ϕn of V ∗, then the
set of all k-fold wedge products ϕi1 ∧ · · · ∧ ϕik with 1 ≤ i1 < i2 < · · · < ik ≤ n is a
basis for Λk(V ), which therefore has dimension

(
n
k

)
= n!

k!(n−k)! .

– Proof: given ω ∈ Λk(V ) ⊂ T k(V ), write ω =
∑
i1,...,ik

ai1,...,ikϕi1 ⊗ · · · ⊗ ϕik .

Thus ω = Alt(ω) =
∑
i1,...,ik

ai1,...,ikAlt(ϕi1 ⊗ · · · ⊗ ϕik).

But now Alt(ϕi1 ⊗ · · · ⊗ ϕik) is some multiple of ϕi1 ∧ · · · ∧ ϕik , which is zero if any
two ij are equal, and otherwise is ±1 times ϕi′1 ∧ · · · ∧ ϕi′k where i′1 < . . . < i′k.
Thus our putative basis is a spanning set.
The proof of independence is as above, using that ϕi1∧· · ·∧ϕik(vj1 , . . . vjk) = δi1j1 · · ·ϕikjk
if i1 < . . . < ik and j1 < . . . < jk:
If 0 = ω =

∑
i1<...<ik

ai1,...,ikϕi1 ∧ · · · ∧ ϕik then 0 = ω(vi1 , . . . , vik) = ai1,...,ik .
• Alternating n-tensors on an n-dimensional space.

– If dimV = n, then dim Λn(V ) = 1, so all n-tensors are multiple of any non-zero one.
– Hence any ω ∈ Λn(Rn) is a multiple of det.
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– Theorem 4-6: If v1, . . . , vn is a basis for V and ω ∈ Λn(V ), then for any n vectors
wi =

∑n
i=1 aijvj , we have ω(w1, . . . , wn) = det(aij) · ω(v1, . . . , vn).

– For the proof, define η ∈ T n(Rn) by η((a11, . . . , a1n), . . . , (an1, . . . , ann) = ω(
∑
j a1jvj , . . . ,

∑
j anjvj).

Then η ∈ Λn(Rn), so η = λ ·det for some λ ∈ R, and λ = η(e1, . . . , en) = ω(v1, . . . , vn).
– (Alternatively, since V is isomorphic to Rn, it suffices to prove it in the latter case, in

which case we know ω = c · det for some c ∈ R, and in this case the claim follows right
away if we assume the multiplicativity of the determinant: det(A·B) = det(A)·det(B).)

Exercises:

• The above basic facts about the wedge product
• Spivak 4-1

• More generally, show that for any ϕ1, . . . , ϕk ∈ V ∗ and any v1, . . . , vk ∈ V , we have ω1 ∧
. . . ∧ ωk(v1, . . . , vk) = det

(
[ϕi(vj)]

k
i,j=1

)
.
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Math 435: Lecture 15
February 12, 2024

Reference: Spivak, pp. 86-89

Topics:

• Orientations
– By the theorem, any non-zero ω ∈ Λn(V ) satisfies ω(v1, . . . , vn) for any basis v1, . . . , vn

(since by definition we must have ω(w1, . . . , wn) for some vectors w1, . . . , wn).
– Thus, the set of bases of V is split into two subsets: those with ω(v1, . . . , vn) > 0 and

those with ω(v1, . . . , vn) < 0.
– Given two bases v1, . . . , vn and w1, . . . , wn with wi

∑
j aijvj , they will be in the same

subset if and only if det(aij) > 0.
– This condition is independent of ω and always separates the bases of V into two subsets;

each of these subsets is called an orientation of V .
– For a basis v1, . . . , vn, we write [v1, . . . , vn] for the orientation to which it belongs, and

the other orientation is denoted −[v1, . . . , vn].
– On Rn, we define the usual orientation (or standard orientation) to be [e1, . . . , en].

• Volume element
– The characterization of det ∈ Λn(Rn) by the property det(e1, . . . , en) = 1 is not

available in a general vector space V since there is no “standard basis”.
– But now suppose V has an inner product T , and consider orthonormal bases v1, . . . , vn

and w1, . . . , wn.
– If wi =

∑
j aijvj , then A = (aij) is an orthogonal matrix: δij = T (wi, wj) =

∑
k aikajk,

or in other words A> = A−1; hence detA = ±1.
– Thus, if ω(v1, . . . , vn) = ±1, then ω(w1, . . . , wn) = ±1.
– If we moreover have an orientation µ, then there is a unique ω with ω(v1, . . . , vn) = 1

for an orthonormal oriented basis [v1, . . . , vn] = µ.
– This is called the volume element of V determined by T and µ.
– In Rn, det is the volume element determined by the standard inner product and ori-

entation.
– The name comes from the fact that det(v1, . . . , vn) is the volume of the parallelepiped

spanned by v1, . . . , vn.
• Tangent vectors

– For fixed p ∈ Rn, the set of all pairs (p, v) with v ∈ Rn is denoted Rnp and is called the
tangent space to Rn at p.

– Of course, Rnp is in bijection with Rn itself, and therefore is a vector space (and has a
standard basis, standard inner product, standard orientation, etc.).

– We write vp for (p, v).
– The endpoint of vp is the point p+ v.

• Vector fields
– A vector field on Rn is a function F on Rn such that F (p) ∈ Rnp for each p.

– The component functions F 1, . . . , Fn : Rn → R of F are given by F (p) = F 1(p)·(e1)p+
· · ·+ Fn(p) · (en)p.

– We say that F is a Ck vector field if each F i is a Ck function.
20
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– Given vector fields F,G and a smooth function f , we can define vector fields F + G
and f · F , and a function 〈F,G〉 pointwise: (F +G)(p) = F (p) +G(p) and so on.

• Divergence and curl
– The divergence divF of a vector field is

∑n
i=1DiF

i.
– If we consider the “vector of differential operators” ∇ =

∑n
i=1Di · ei = (D1, . . . , Dn),

we can write divF = 〈∇, F 〉.
– Similarly, in R3, we can write (∇× F ); this is called the curl of F .
– The names “divergence” and “curl” comes from physics you may have seen; we will

discuss it later.
• Differential forms

– A differential form of degree k (or just k-form) on Rn is a function ω with ω(p) ∈
Λk(Rnp ) for each p ∈ Rn.

– If ϕ1(p), . . . , ϕn(p) is dual basis to (e1)p, . . . , (en)p, we can write

ω(p) =
∑

i1<···<ik

ωi1,...,ik(p) · [ϕi1(p) ∧ · · · ∧ ϕik(p)]

– We say that ω is a Cl k-form if each ωi1,...,ik is Cl. As usual, we only really care about
the case l =∞.

– We can define the sum ω+η, multiple f ·ω, and ω∧η of forms pointwise: (ω+η)(p) =
ω(p) + η(p) and so on.

– We also consider a function as a 0-form and write f ∧ ω for f · ω.

Exercises:

• Prove (2)-(4) of Theorem 4-8
• Spivak 4-14
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Math 435: Lecture 16
February 14, 2024

Reference: Spivak, pp. 89-90

Topics:

• Differential of a function
– If f : Rn → R, we have Df(p) ∈ Λ1(Rn); using the correspondence Rnp ∼= Rn, we thus

obtain a 1-form df :

df(p)(vp) = Df(p)(v).

– We write xi : Rn → R for the function returning the i-th coordinate of a point.
– Warning: there is potential for confusion: sometimes, we write (x1, . . . , xn) for the

coordinates of a given point, so each xi is a number. Now, we are writing xi for the
coordinate function, so xi(a1, . . . , an) = ai.

– We now consider the 1-form dxi. We have

dxi(p)(vp) = Dxi(p)(v) = vi.

– Hence dx1(p), . . . ,dxn(p) is the dual basis to (e1)p, . . . , (en)p, and we can write any
k-form ω as

ω =
∑

i1<...<ik

ωi1,...,ik(p) dxi1 ∧ · · · ∧ dxik .

– Theorem 4-7: if f : Rn → R is differentiable, then

df =
∂f

∂x1
· dx1 + · · ·+ ∂f

∂xn
· dxn.

The proof: df(p)(vp) = Df(p)(v) =
∑n
i=1 v

i · ∂f∂xi (p) =
∑n
i=1 dxi(p)(vp) · ∂f∂xi (p).

• Pullbacks of differential forms
– Given a differentiable function f : Rn → Rm, we have Df(p) : Rn → Rm; thus identi-

fying Rn,Rm with Rnp ,Rmp , we obtain a linear map f∗ : Rnp → Rmp :

f∗(vp) =
(
Df(p)(v)

)
f(p)

(In an exercise, you will prove an important alternative characterization of f∗: each
v ∈ Rnp is the tangent vector γ′(0) to a curve γ through p; and f∗v ∈ Rmf(p) is just the

tangent vector (f ◦ γ)′(p) of f ◦ γ through f(p).)
– We define the pullback of a k-form ω on Rm to be k-form f∗ω on Rn given by

(f∗ω)(v1, . . . , vk) = ω
(
f(p)

)
(f∗v1, . . . , f∗vk).

– Theorem 4-8:
(1) f∗ dxi = df i (and more generally: f∗ dg = d(g ◦ f))
(2) f∗(ω1 + ω2) = f∗ω1 + f∗ω2

(3) f∗(g · ω) = (g ◦ f) · f∗ω
(4) f∗(ω1 ∧ ω2) = f∗ω1 ∧ f∗ω2

– Part (1) follows from the chain rule
– Exercise: Prove (2)-(4)
– Example: suppose we have open sets U ⊂ R2 and V ⊂ R3, a differential form α defined

on V , and a smooth function f : U → V .
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– It is helpful to use different notation for the coordinates on U and V ; let us write
x, y : U → R for the coordinate functions on U and X,Y, Z : V → R for the coordinates
on V .
Now suppose

α = P (X,Y, Z) dX ∧ dY +Q(X,Y, Z) dY ∧ dZ

Then

f∗α = (P ◦ f)[f∗(dX1) ∧ f∗(dX2)] + (Q ◦ f)[f∗(dX2) ∧ f∗(dX3)]

= (P ◦ f)[df1 ∧ df2] + (Q ◦ f)[df2 ∧ df3]
(1)

– What this means in practice is that we “express X,Y, Z in terms of x, y and substitute”.
Example: suppose

f(x, y) = (x sin y, xy, yex)

P (X,Y, Z) = X + Y

Q(X,Y, Z) = X + Z

so that
α = (X + Y ) dX ∧ dY + (X + Z) dY ∧ dZ.

Now we perform the substitution X = f1(x, y) = x sin y, Y = f2(x, y) = xy, Z =
f3(x, y) = yex, and obtain:

f∗α = (x sin y + xy) d(x sin y) ∧ d(xy) + (x sin y + yex) d(xy) ∧ d(yex).

Notice how this corresponds precisely to the expression (1).
To finish working this out, we should compute each of the differentials. For example:

d(x sin y) ∧ d(xy) = (sin y dx+ x cos y dy) ∧ (x dy + y dx)

= x sin y dx ∧ dy + xy cos y dy ∧ dx

= (x sin y − xy cos y) dx ∧ dy
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Math 435: Lecture 17
February 16, 2024

Reference: Spivak, pp. 90-91 and 100

Topics:

• Pulling back n-forms on Rn
– Theorem 4-9: if f : Rn → Rn is differentiable, then

f∗(hdx1 ∧ · · · ∧ dxn) = (h ◦ f)(det f ′)(dx1 ∧ · · · ∧ dxn).

– To prove it, fix p ∈ Rn and let A = (aij) = f ′(p). We then have (omitting “p” from
the notation after the first equality sign):

f∗(dx1 ∧ · · · ∧ dxn)p(e1(p), . . . , en(p)) = dx1 ∧ · · · ∧ dxn(f∗e1, . . . , f∗en)

= dx1 ∧ · · · ∧ dxn
( n∑
i=1

ai1ei, . . . ,

n∑
i=1

ainei
)

= det(aij) dx1 ∧ · · · ∧ dxn(e1, . . . , en)

• Integrating n-forms on Rn (Spivak p. 100)
– Let α be a (smooth) n-form defined on an open set U ⊂ Rn.

We have α = hdx1 ∧ · · · ∧ dxn for a unique smooth function h.
Suppose (for simplicity) that h is bounded. We define:∫

U

α =

∫
U

hdx1 ∧ · · · ∧ dxn ..=

∫
U

h =

∫
U

h(x1, . . . , xn) dx1 . . . dxn

– This seems completely trivial: an n form on Rn is essentially a function, and we define
the integral of the n-form.

– However, we have the following fundamental fact:
If V ⊂ Rn is another open set and g : V → U is an orientation-preserving diffeomor-
phism (meaning that det g′(p) > 0 for all p ∈ V ), then

∫
V
g∗α =

∫
U
α. Indeed, we

have (using det g′ = |det g′|)∫
V

g∗α =

∫
V

g∗(hdx1 ∧ · · · ∧ dxn)

=

∫
V

(h ◦ g) det g′ dx1 ∧ · · · ∧ dxn

=

∫
V

(h ◦ g) det g′

=

∫
U

h

=

∫
U

α.

– Thus the formalism of differential forms has the change of variables formula “built in”.
– The differential form α on U is thus a “geometric” object on U which is independent

of the particular way U is parametrized (as long as the orientation is preserved).
• Let us write Ωk(U) for the set of differential k-forms defined on an open set U ⊂ Rn.
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• Exterior derivative
– We now generalize the operation d: Ω0(U) → Ω1(U) to an operation d: Ωk(U) →

Ωk+1(U) for all k.
– If

ω =
∑

i1<...,ik

ωi1,...,ik dxi1 ∧ · · · ∧ dxik ,

then we define

dω ..=
∑

i1<...,ik

dωi1,...,ik dxi1 ∧ · · · ∧ dxik

=
∑

i1<...,ik

n∑
j=1

∂

∂xj
ωi1,...,ik dxj ∧ dxi1 ∧ · · · ∧ dxik ,

– Theorem 4-10: (1) Exercise: d(ω + η) = dω + dη
(2) Exercise: If ω ∈ Ωk(U) and η ∈ Ωl(U), then d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη.
(This is called the “graded Leibniz rule”.)
(3) d(dω).
Briefly, d2 = 0. (4) If f : U → V is smooth and ω ∈ Ωk(U), then f∗(dω) = d(f∗ω).

Exercises:

• d(ω + η) = dω + dη
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Math 435: Lecture 18
February 21, 2024

Reference: Spivak, pp. 91-93

Topics:

• Basic properties of the exterior derivative
– Theorem 4-10: (1) Exercise: d(ω + η) = dω + dη

(2) Exercise: If ω ∈ Ωk(U) and η ∈ Ωl(U), then d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη.
(This is called the “graded Leibniz rule”.)
(3) d(dω). Briefly, d2 = 0.
(4) If f : U → V is smooth and ω ∈ Ωk(U), then f∗(dω) = d(f∗ω).

– For (3), we have (writing I as a shorthand for i1 < . . . < ik, ωI for ωi1,...,ik , and dxI

for dxi1 ∧ · · · ∧ dxik :

d dω = d
∑
I

∑
j

∂

∂xj
ωI dxj ∧ dxI =

∑
I

∑
j,k

∂

∂xk
∂

∂xj
ωI dxk ∧ dxj ∧ dxI .

But now switching j and k reverses the sign but gives the same result, so the sum
must be zero.

– (4) is proven by induction. We have seen that it’s true for 0-forms (by the chain rule).
For the induction step, we note that every (k + 1)-form is a sum of forms of the form
ω ∧ dxi, and we have

f∗ d(ω ∧ dxi) = f∗(dω ∧ dxi)

= f∗ dω ∧ f∗ dxi

= d(f∗ω) ∧ df i

= d(f∗ω ∧ df i)

= d(f∗ω ∧ f∗ dxi)

= df∗(ω ∧ dxi)

• Closed and exact forms
– A form ω ∈ Ωk(U) is closed if dω = 0 and exact if ω = dη for some η ∈ Ωk−1(U).
– The above theorem shows that every exact form is closed.
– We ask: is every exact form closed?
– The answer is: yes for forms on Rn, but no for forms on general open subsets U .
– Example: let us write x = r cos θ and y = r sin θ.

Then dx = cos θ dr − r sin θ dθ and dy = sin θ dr + r cos θ dθ.
Solving for dθ, we obtain

dθ =
−r sin θ dx

r2
+
r cos θ dy

r2
=

−y
x2 + y2

dx+
x

x2 + y2
dy

– Note that dθ is defined on U = R2 − {(0, 0)}.
– Despite the notation, dθ is not exact. The point is that θ is not actually a well-defined

function on all of R2−{0}; it is defined on U1 = R2−{(x, y) | x ≤ 0} (and takes values
in (0, 2π)) and it is defined on U2 = R2−{(x, y) | x ≥ 0} (and takes values in (−π, π)).
Hence on U1 and U2, dθ is an exact form; but on U it is not.
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– However, it is closed, since it is exact on U1 and U2, hence d dθ(p) = 0 for each point
of U = U1 ∪ U2.

– To see it is not exact, we need the general theory of integration of forms, which we
don’t have yet. Let us sketch the argument, as a “preview” of how this theory works.
Given a curve γ : [a, b]→ R2, we can integrate any 1-form α over γ:

∫
γ
α. As one might

guess, for an exact form df , we have
∫
γ

df = f(b)−f(a). In particular, if γ(a) = γ(b),

then
∫
γ

df = 0.

Now let γ(t) = (cos t, sin t), t ∈ [0, 2π]. Let us try to compute
∫
γ

dθ (even though we

do not yet know what this means!); we proceed “formally”. We have x = cos t and
y = sin t, and hence dx = − sin tdt and y = cos tdt. Thus∫

γ

−y
x2 + y2

dx+
x

x2 + y2
dy =

∫ 2π

0

sin2 tdt+ cos2 dt = 2π

Since this is not zero, γ cannot be exact.
– The amazing thing about the theory of integrating differential forms is that it makes

the above “symbolic” computation rigorous.

Exercises:

• Find a differential form α ∈ Ωn−1(Rn) such that dα = dx1 ∧ · · · ∧ dxn. (You might want
to start with the case n = 1 or n = 2.)
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Reference: Spivak, pp. 93-95 and 109-111

Topics:

• Poincaré lemma
– We return to the other answer to the question: every closed ω ∈ Ωk(Rn) is exact.
– More generally, an open set U ⊂ Rn is star shaped if for each p ∈ U , the line segment
{t · p | 0 ≤ t ≤ 1} is contained in U .

– Theorem 4-11 (Poincaré Lemma): If U ⊂ Rn is star-shaped, then every closed ω ∈
Ωk(U) is exact (for k ≥ 1).

– Here is the proof when k = 1.
– Let ω =

∑n
i=1 ωi dxi. We have dω =

∑n
i,j=1 Djωi dxj∧dxi =

∑
i<j(Diωj−Djωi) dxi∧

dxj .
Hence ω is closed if and only if Diωj = Djωi for all i < j.

– Next suppose ω were exact, so ω = df and ωi = Dif for all i.

– Then (since U is star-shaped!) f(x) =
∫ 1

0
d
dt (f(tx)) dt =

∫ 1

0

∑n
i=1 Dif(tx)xi dt =∫ 1

0

∑n
i=1 ωi(tx)xi dt.

– Hence, given an arbitrary closed ω, we define f by the above formula.
– Then (using Diωj = Djωi), we have

Djf(x) =

∫ 1

0

n∑
i=1

[Djωi(tx)txi + ωi(tx)δij ] dt

=

∫ 1

0

[ n∑
i=1

[
Diωj(tx)txi

]
+ ωj(tx)

]
dt

=

∫ 1

0

d

dt

[
ωj(tx)t

]
dt

= ωj(x).

• Manifolds
– A subset M ⊂ Rn is a (smooth) k-dimensional submanifold of Rn (or just k-manifold)

if for each x ∈ M , there is an open subset U ⊂ Rn containing x, an open subset
V ⊂ Rn, and a diffeomorphism h : U → V such that

h(U ∩M) = V ∩ (Rk × {0}) = {y ∈ V | yk+1 = · · · = yn = 0}.
(One can also speak of Cl-manifolds for any l ≥ 0 by demanding that the charts h be
Cl-diffeomorphisms rather than smooth.)
The map h is called a flattener.

– Most basic example: every open subset U ⊂ Rn is an n-manifold with since idU is a
flattener. Also, any point p ∈ Rn is an n-manifold with f(x) = x− p a flattener.

– Example: the n-sphere Sn = {x | Rn+1 | |x| = 1}.
This can be checked directly or with the following theorem.

– A point x ∈ U of an open subset U ⊂ Rn is a regular point of a smooth map g : U → Rp
is Dg(x) : Rn → Rp is surjective (or equivalently, if g′(x) has rank p); otherwise, it is
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called a critical point.
A point a ∈ Rp in called a regular value of g if x is a regular point of g for all x ∈ g−1(a);
otherwise it is called a critical value.

– Theorem 5-1: if U ⊂ Rn is open and g : U → Rp is smooth and 0 is a regular value of
g, then g−1(0) is an (n− p)-dimensional manifold in Rn.
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Reference: Spivak, pp. 109-112

Topics:

• Manifolds
– A subset M ⊂ Rn is a (smooth) k-dimensional submanifold of Rn (or just k-manifold)

if for each x ∈ M , there is an open subset U ⊂ Rn containing x, an open subset
V ⊂ Rn, and a diffeomorphism h : U → V such that

h(U ∩M) = V ∩ (Rk × {0}) = {y ∈ V | yk+1 = · · · = yn = 0}.

(One can also speak of Cl-manifolds for any l ≥ 0 by demanding that the charts h be
Cl-diffeomorphisms rather than smooth.)

– Some terminology: The map h is called a flattener.
By restriction, we obtain an induced map ϕ : 〈h1, . . . , hk〉 : U ∩M → W ⊂ Rk where
W = {y ∈ Rk | (y, 0) ∈ V }, called a (k-dimensional) coordinate chart (or just a chart)
for M .
The inverse, ϕ−1 : W → U ∩M is called a parametrization of U ∩M ; it is smooth, since
it is the composition of the smooth map h−1 with the embedding W → V (y 7→ (y, 0)).
A (k-dimensional) atlas for M is a set of coordinate charts {hα : Uα ∩M →W}α∈I
such that the sets Uα cover M .
Thus, a subset M ⊂ Rn is a k-manifold if and only if it admits a k-dimensional atlas.

– Most basic example: every open subset U ⊂ Rn is an n-manifold with an atlas consist-
ing of the single chart idU . Also, any point p ∈ Rn is an n-manifold with f(x) = x− p
a flattener.

– More interesting example: the n-sphere Sn = {x | Rn+1 | |x| = 1}.
This can be checked directly or with the following theorem.

• Manifolds as zero-sets
– A point x ∈ U of an open subset U ⊂ Rn is a regular point of a smooth map g : U → Rp

is Dg(x) : Rn → Rp is surjective (or equivalently, if g′(x) has rank p); otherwise, it is
called a critical point.
A point a ∈ Rp in called a regular value of g if x is a regular point of g for all x ∈ g−1(a);
otherwise it is called a critical value.

– Theorem 5-1: if U ⊂ Rn is open and g : U → Rp is smooth and 0 is a regular value of
g, then g−1(0) is an (n− p)-dimensional manifold in Rn.
(Compare the situation in linear algebra: if T : Rn → Rp is a surjective linear map,
then its nullspace ker(T ) is an (n− p)-dimensional subspace.)

– The proof uses the inverse function theorem (and is, together with the next theorem,
the most important application of the latter).
Given x ∈M ..= g−1(0), we must find a flattener for M on a neighbourhood of x.
Since Dg(x) : Rn → Rp is surjective, we have by the rank-nullity theorem that ker

(
Dg(x)

)
is n− p-dimensional.
By applying an invertible linear transformation to M , we can assume x = 0 and
ker
(
Dg(x)

)
= Rn−p × {0} (it’s easy to see that the existence of a flattener is unaf-

fected by applying an invertible linear transformation).
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Since Dg(x) is surjective and Dg(ei) = 0 for i ≤ n−p, it follows that Dg(x)(en−p+1), . . . ,Dg(x)(en)
span Rp. Now let π : Rn → Rn−p be the projection onto the first n − p coordinates,
and define a map g̃ : A→ Rn−p × Rp ∼= Rn by g̃(y) =

(
π(y), g(y)

)
.

Since Dig
j(x) = 0 for i ≤ n− p, we see that g′(x) is a block-diagonal matrix, with one

block (n− p)× (n− p) identity matrix, and the second block having rank p, and thus
invertible. It follows that det g′(x) 6= 0.
Hence, by the inverse function theorem, there is a neighbourhood U ⊂ Rn of x and
V ⊂ Rn of g̃(x) = (π(x), 0) such that g̃|U : U → V is a diffeomorphism.
Since M = g−1(0), it follows that g̃(U ∩M) = V ∩ (Rn−p × {0}), and we are done.

• Manifolds in terms of parametrizations
– We have just seen that a k-manifold in Rn can be represented as the preimage of a

regular value of a map Rn → Rn−k, just as a linear k-dimensional subspace can be
written as the kernel of a linear surjection Rn → Rn−k.
But we can also represent a k-dimensional linear subspace as the image of a injection
Rk → Rn. Correspondingly, we can characterize manifolds in terms of parametriza-
tions, rather than charts:

– Theorem 5-2: a subset M ⊂ Rn is a k-manifold if and only if for each x ∈ M , there
is an open neighbourhood U ⊂ Rn of x, an open W ⊂ Rk, and an injective smooth
map f : W → Rn such that (i) f(W ) = M ∩ U , (ii) Df(y) : Rp → Rn is injective for
all y ∈W (equivalently, f ′(y) has rank p), and (iii) f−1 : f(W )→W is continuous.

– The proof again uses the inverses function theorem.
– If M is a k-manifold and x ∈ M , then we have a chart ϕ : M ∩ U → W ⊂ Rk; we

have seen that the parametrization ϕ−1 is smooth, and its derivatives D(ϕ−1)(y) must
be injective since it is a restriction of a diffeomorphism; also, its inverse ϕ is certainly
continuous.

– In the other direction, let x ∈M and suppose we have f : W →M ∩U with the given
properties; we want to show that there exists a chart around x.
Fix y ∈ W with f(y) = x. Again by applying an invertible linear transformation to
M , we may assume that the image of Df(y) is Rk × {0}.
Now define g : W × Rn−k → Rn by g(y, z) = f(y) + z.
Since Dig

j(y) = 0 for i > k, we have that g′(y, 0) is a block diagonal matrix, with a k×k
block of rank k (hence invertible) followed by an identity matrix. Thus det g′(y, z) 6= 0.
By the inverse function theorem, there is some neighbourhood V1 ⊂ W × Rk contain-
ing (y, 0) and a neighbourhood V2 ⊂ U such that g(V1) = V2 and g : V1 → V2 is a
diffeomorphism.
Let W ′ = {y ∈W | (y, 0) ∈ V1}, so that W ′ ⊂ Rk is open. Since f−1 is continuous,
there is some open subset V ′2 ⊂ V2 such that f(W ′) = M ∩ V ′2 . Let V ′1 = g−1(V ′2), so
that g : V1 → V2 is still a diffeomorphism.
Then g−1 : V2 → V1 is a flattener, since g−1(M ∩ V2) = W ′ × {0}.

• Transition maps
– Suppose M is a manifold and ϕ1 : M ∩ U1

∼−→ W1 and ϕ2 : M ∩ U2
∼−→ W2 are two

charts, and consider the intersection M ′ = M ∩ U1 ∩ U2.
– We have bijections ϕ1|M ′ : M ′ → ϕ1(M ′) ⊂ V1 and ϕ2|M ′ : M ′ → ϕ2(M ′) ⊂ V2, and

hence a bijection ϕ12 : ϕ1(M ′)→ ϕ2(M ′) given by ϕ2(ϕ−1
1 (x)).
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– Since ϕ12 is the composition of the smooth (parametrization) map ϕ−1
1 : W1 → Rn and

the map ϕ2 = (h1, . . . , hk) for some smooth map (namely a flattener) h : U2 → V ⊂ Rn.
Its inverse is also smooth since it is just ϕ21 = ϕ1 ◦ ϕ−1

2 .
– Hence ϕ12 is a diffeomorphism; it is called the transition map between the charts ϕ1

and ϕ2.

Exercises:

• Let f : R → R be a smooth function. Prove that its graph {(x, f(x)) | x ∈ R} ⊂ R2 is a
1-manifold.

• Spivak 5-5
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Reference: Spivak, pp. 112-113

Topics:

• Manifolds with boundary
– The half-space Hk ⊂ Rk is defined as Hk = {x ∈ Rk | xk ≥ 0}.
– A subset M ⊂ Rn is a k-dimensional manifold-with-boundary if for each x ∈M , there

exists an open neighbourhood U ⊂ Rn of x, an open set V ⊂ Rn, and a smooth map
h : U → V such that

h(U ∩M) = V ∩ (Hk × {0}) = {y ∈ V | yk ≥ 0 and yk+1 = · · · = yn = 0}.

We call such a map h a flattener with boundary (or just a flattener).
– Note that if h : U → V ⊂ Rn is a flattener (without boundary), then by shrinking U

and adding a constant to h, we can ensure that hk > 0, hence that h is flattener with
boundary.
Hence every manifold is a manifold-with-boundary.

– Again, a half-flattener h induces a chart (ϕ1, . . . , ϕk) : U ∩ M → W , where W =
{y ∈ Hk | (y, 0) ∈ V }. The inverse ϕ−1 : W → U ∩M is called a parametrization, and
is a smooth map (in the sense that it extends to a smooth map W ′ → Rn on an open
subset W ′ ⊂ Rk containing W ⊂ Hk).

– Again, given two charts ϕi : Ui∩M →Wi ⊂ Hk (i = 1, 2), we have a smooth transition
map ϕ2 ◦ ϕ−1

1 : ϕ1(U1 ∩ U2 ∩M)→ ϕ2(U1 ∩ U2 ∩M).
– The boundary ∂M ⊂M of a manifold-with-boundary M consists of those points x ∈M

such that ϕk(x) = 0 for some chart h : U ∩M → V ⊂ Hk, we have hk(x) = 0.
WARNING: this is not to be confused with the boundary of a general subset of Rn,
as defined previously (though they may sometimes agree).

– If x ∈ ∂M , it follows that in fact ϕk(x) = 0 for every chart ϕ. Indeed, suppose
we had charts ϕ1, ϕ2 with ϕk1(x) = 0 but ϕk2(x) > 0. Then taking a small open
neighbourhood B ⊂ Hk of ϕ1(x), we can assume that yk > 0 for all y ∈ B. But the
image ϕ2(ϕ−1

1 (B)) of B under the transition map would be a subset of Hk containing
ϕ2(x) ∈ Rk−1×{0}, which therefore cannot be open, contradicting that the transition
map is a diffeomorphism.

• Smooth maps
– If M ⊂ Rm and N ⊂ Rn are smooth manifolds with boundary, we say that a map
f : M → N is smooth at x ∈ M if there is a neighbourhood U ⊂ Rn of x such that
f : M ∩ U → Rn extends to a smooth map U → Rn. We say that f is smooth if it is
smooth at every x ∈M .
This is equivalent to f extending to a smooth function U → Rn on an open subset
U ⊂ Rn containing M .
Indeed, if f extends to a smooth function fx on an open neighbourhood Ux of each
x ∈ M , then using a partition of unity {ϕx}x∈M subordinate to the cover {Ux}x∈M ,
we have that

∑
x ϕxfx is a smooth extension of f to

⋃
x∈M Ux.

– Proposition: the following are equivalent:
(i) f is smooth
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(ii) For each x ∈M , there are charts ϕ1 : M ∩ U1 → W1 of M and ϕ2 : N ∩ U2 → W2

of N such that ϕ2 ◦ f ◦ ϕ−1
1 : W1 →W2 is smooth.

(iii) For every chart ϕ1 : M ∩ U1 → W1 of M and ϕ2 : N ∩ U2 → W2 of N , the map
ϕ2 ◦ f ◦ ϕ−1

1 : W1 →W2 is smooth.
– The implications (i) =⇒ (iii) =⇒ (ii) are straightforward.
– For the implication (ii) =⇒ (i): given x ∈M , consider charts ϕ1 : M ∩ Ui →Wi ⊂ Rk

for M and N , respectively, with x ∈ U1 and f(x) ∈ U2, and we consider a flattener
h1 : U1 → V1 corresponding to ϕ1. By assumption, ϕ2 ◦ f ◦ ϕ−1

1 is smooth.
Then, writing π : Rm → Rk for the projection on the first k coordinates, we have that
ϕ1 = π ◦ h1, and ϕ−1

1 ◦ (ϕ2 ◦ f ◦ϕ−1
1 ) ◦ h1 : U1 → Rn is a smooth extension of f to U1.

– A smooth map between manifolds is a diffeomorphism if it is a bijection whose inverse
is also a smooth map.

– It follows that each chart ϕ : U ∩ M → W is itself smooth (since if we choose the
chart ϕ on M and idon W , then the map id ◦ ϕ ◦ ϕ−1 = idW is obviously smooth)
and hence a diffeomorphism, since we already know that its inverse (the corresponding
parametrization) is smooth.
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Reference: Spivak, pp. 115-117

Topics:

• Tangent spaces
– For a k-manifold M ⊂ Rn and point x ∈ M , we define a tangent vector to M at x to

be any vector v ∈ Rnx of the form v = γ′(0)x ∈ Rnx for a smooth curve γ : (a, b) → M
(i.e., a smooth curve γ : (a, b)→ Rn lying entirely inside M) with γ(0) = x.

– The set of all tangent vectors to M at x is called the tangent space to M at x, denoted
TxM (Spivak denotes it by Mx).

– It is a linear subspace of Rnx of dimension k. Indeed, if f : W → U∩M is a parametriza-
tion around x, every curve on M through x is (possibly after restricting its domain) of
the form f ◦ γ for a smooth curve γ in W ⊂ Rk through y, where f(y) = x, and hence
(f ◦ γ)′(0)x = f∗(γ

′(0)y).
It follows that TxM is just the image of the injective linear map f∗ : Rky → Rnx , and
hence is indeed a k-dimensional linear subspace.

– Note that if U ⊂ Rn is an open subset of Rn (hence an n-manifold), then TxU is just
equal to Rnx .

– The standard inner product on Rnx induces an inner product on TxM .
– For a k-manifold with boundary M and a point x in the boundary, we define TxM

as the image of f∗ : Rky → Rnx for a parametrization f : W → U ∩M around x (where

here W ⊂ Hk).
• Derivative of a smooth map

– Given a smooth map f : M → N between manifolds M ⊂ Rm and N ⊂ Rn and a
point x ∈ M , we define its derivative at x to be the linear map f∗ : TxM → Tf(x)N
which takes a tangent vector γ′(0)x at x, where γ : (a, b) → M is a smooth curve, to
the tangent vector (f ◦ γ)′(0)f(x) ∈ Tf(x)N .

– To see that this is indeed linear (and that it is well-defined), we note that it can be
described alternative as follows: first extend f to a smooth map F : U → Rn on an
open set U ⊃M . Then f∗ : TxM → Tf(x)N is just the restriction of F∗ : Rmx → Rnf(x).

– If M ⊂ Rm and N ⊂ Rn are open subsets (thus and m- and n-manifold, respectively),
we see that the derivative specializes to the derivative in the usual sense.

– Immediately from the definition, we have the chain rule: given smooth maps L
f−→

M
g−→ N and a point x ∈ L, we have

(g ◦ f)∗ = g∗ ◦ f∗ : TxL→ Tg(f(x))N.

• Vector fields on manifolds
– A vector field on a smooth manifold M is a function F assigning to each x ∈ M a

tangent vector F (x) ∈ TxM . We can view F as a function M → Rn (since TxM ⊂
Rnp ∼= Rn), and we say that F is a smooth vector field if this is a smooth function.

– If f : M → N is any diffeomorphism, we can define a vector field f∗F on N , the
pushforward of F along f , by the formula (f∗F )(f(y)) = f∗(F (y)).

– In particular, we obtain a vector field ϕ∗F on each chart U ∩M →W ⊂ Rk.
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– Thus, we can think of a vector field on M as a vector field specified on each chart,
such that they agree with each other when we push them forward along the transition
maps.

• Differential forms on manifolds
– A differential p-form ω on M is a function assigning to each x ∈ M an element of

ΛpTxM .
– Given a parametrization f : W → U ∩M , we can define a pulled back p-form f∗ω on
W by the usual formula (f∗ω)(y)(v1, . . . , vp) = ω(f(y))(f∗v1, . . . , v∗vp).
We define ω to be smooth if f∗ω is smooth for each parametrization f .

– We write Ωk(M) for the set of smooth k-forms on M .
– Similarly, for any smooth map f : M → N between manifolds and a p-form ω on N ,

we can define f∗ω on M by the same formula.
– This pullback satisfies all the familiar properties (i) f∗(ω1 + ω2) = f∗ω1 + f∗ω2, (ii)
f∗(·ω) = c · f∗ω for a scalar c, (iii) f∗(ω ∧ η) = f∗ω ∧ f∗η, (iv) f∗(g) = f ◦ g for a
0-form g : N → R, and also, importantly: (iv) (g ◦ f)∗ω = f∗g∗ω given smooth maps

L
f−→M

g−→ N .
(Here, the sum and wedge product of two differential forms on a manifold is defined
pointwise, just as before.)

– Given a p-form ω on M , we define its exterior derivative dω by the condition that for
each parametrization f : W → U ∩M , we have f∗ dω = d(f∗ω).

– This is independent of the chosen parametrizations since if g : W ′ → U ∩M is a second
parametrization then, we have the transition map h = f ◦ g−1 : W ′ →W , and

g∗(dω) = h∗f∗(dω) = h∗ d(f∗ω) = d(h∗f∗ω) = d(g∗ω),

where in for the third equality, we are using that we already know that pullback is
compatible with exterior derivative for smooth maps between open subsets of Rk.

– It follows from this definition that for any smooth map f : M → N between smooth
manifolds and a differential form ω on N , we have f∗(dω) = d(f∗ω).
Indeed, if g : W → (M ∩U) and h : W ′ → (N ∩U ′) are parametrizations, then we need
to check that g∗(f∗ dω) = d(g∗f∗ω), and we have:

g∗(f∗ dω) = (h−1 ◦ f ◦ g)∗(h∗ dω) = (h−1 ◦ f ◦ g)∗(d(h∗ω))

= d(h−1 ◦ f ◦ g)∗(h∗ω) = d(g∗(f∗ω)).
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Topics:

• Orientations
– Let M be a manifold(-with-boundary) and suppose we have chosen an orientation µx

on the vector space TxM for each x ∈M .
– Such a choice of orientations is called consistent if for each x ∈M , there is a parametriza-

tion f : W ∼−→M∩U with f(a) = x for some a ∈W and such that [f∗((e1)b), . . . , f∗(ek)b] =
µf(b) for every b ∈ U .

– A consistent choice of orientations for M is called an orientation for M , and if one
exists, we say that M is orientable. A manifold together with an orientation is called
an oriented manifold.

– The Möbius strip is an example of a non-orientable manifold. It can be defined explic-
itly as the set {(R+ a cos(ϕ/2))(cos θ, sin θ, 0) + (0, 0, a sin(ϕ/2)) | θ ∈ [0, 2π), a ∈ (−l, l)} ⊂
R3 for any 0 < r < R.

– If x ∈ ∂M is a point in the boundary of a k-manifold with boundary M , then Tx(∂M)
is a (k − 1)-dimensional subspace of TxM , and hence there are two unit vectors in
TxM perpendicular to Tx(∂M).
One of these is distinguished by the property of being equal to f∗(v0) for some chart

Hk ⊃ W
f−→ M ∩ U where vk < 0. This is called the outward unit normal n(x). This

property does not depend on the particular parametrization f chosen.
– If µ is an orientation on M , we define an induced orientation ∂µ on ∂M as follows.

Given x ∈ M , we declare [v1, . . . , vk−1] to be in (∂µ)x oriented basis if and only if
[n(x), v1, . . . , vk−1] ∈ µx.

– Note: applying this definition to the standard orientation on Hk, we find that the
induced orientation on ∂Hk ∼= Rk−1 is (−1)k times the standard orientation. (However,
this convention will make later formulas – specifically Stokes’ theorem – work out nicely.

– If M ⊂ Rn is an (n− 1)-manifold, then every orientation induces a unit normal vector
n(x) ∈ Rnx perpendicular to TxM ; and conversely, a smooth function assigning to each
x ∈M such a normal vector determines an orientation.

– A smooth map f : M → N between oriented manifolds (M,µ) and (N, ν) of the same
dimension is orientation-preserving if for each x ∈ M and each [v1, . . . , vk] ∈ µx, we
have [f∗v1, . . . , f∗vk] ∈ µf(x).
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Reference: Spivak, pp. 122-126

Topics:

• Integration on oriented manifolds
– Let M ⊂ Rn be an oriented k-manifold(-with-boundary) and ω ∈ Ωk(M), and suppose

that for some orientation-preserving parametrization f : W ∼−→ M ∩ U , such that ω is
zero outside of U . We then define∫

M

ω =

∫
W

f∗ω.

– This is independent of the choice of parametrization f ! Indeed, given a second such
g : W ′ ∼−→M ∩ U ′, we have∫

W ′
g∗ω =

∫
W

(h ◦ f)∗ω

∫
W

h∗(f∗ω)

where h : W ′ → W is the transition function. (Here, we are assuming that U = U ′,
which we can do by shrinking both U and U ′ (and hence W and W ′), since ω is by
assumption zero outside of U ∩ U ′.)
But we already showed that integrals over open subsets of Rn are invariant under
pulling back along arbitrary orientation-preserving maps!

– Now in general, if ω ∈ Ωk(M) vanishes outside of a compact set (for example, if M
itself is compact), we choose a partition of unity Φ for M subordinate to some (finite)
atlas for M , so that

∫
M
ϕ · ω is defined for all ϕ ∈ Φ, and we define∫

M

ω =
∑
ϕ∈Φ

∫
M

ϕ · ω

– It follows from the definition that if dimM = dimN and f : M → N is any orientation-
preserving diffeomorphism and ω ∈ ΩdimN (N), then

∫
M
f∗ω =

∫
N
ω.

– Stokes’ Theorem (Theorem 5-5): If M is a compact oriented k-manifold-with-boundary
and ω is a (k − 1)-form on M , then∫

M

dω =

∫
∂M

ω.

Here, we are considering ω ∈ Ωk(M) as a (k − 1)-form on ∂M by restricting it:
since Tx(∂M) is a subspace of TxM for every x ∈ ∂M , the alternating k-tensor
ωp ∈ Λk(TpM) also defines an alternating k-tensor on Tp(∂M).
Another way to say it is that we are taking the pullback i∗ω, where i : ∂M ↪→ M is
the inclusion map.

– For the proof, we first consider the case in which M = Hk, hence ∂M = Rk−1×{0} ⊂
Hk, and ω is compactly supported, meaning that it is equal to zero outside of a compact
set.

– We have

ω =

k∑
i=1

ωi dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxk,
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where the hat indicates omission, and hence

dω =

k∑
i=1

(−1)i−1Diωi dx1 ∧ . . . ∧ dxk

and hence∫
Hk

dωk =

k∑
i=1

(−1)i−1

∫
Hk

Diωi

= (−1)k
∫
Rk−1

(∫ ∞
0

Dkωi dxk
)

dx1 . . . dxk−1+

+

k−1∑
i=1

(−1)i−1

∫
Hk−1

(∫ ∞
−∞

Diωi dxi
)

dx1 . . . d̂xi . . . dxk

= (−1)k
∫
Rk−1

ω(x1, . . . , xk−1, 0) dx1 . . . dxk−1

=

∫
∂Hk

ω.

where in the penultimate line we used the fundamental theorem of calculus and the
fact that ω = 0 outside of a bounded set, and on the last line, we use that the induced
orientation on ∂Hk ∼= Rk−1 is (−1)k times the standard orientation.

– We now consider a general M ⊂ Rn. Choose a finite atlas {f : Wi → Ui ∩M}Ni=1 (this
is possible by compactness of M) and a partition of unity Φ = {ϕi}Ni=1 subordinated

to the cover M ⊂
⋃N
i=1 Ui.

We then have ω =
∑N
i=1 ϕiω and thus∫

∂M

ω =

N∑
i=1

∫
∂M

ϕiω

and ∫
M

dω =

∫
M

d
( N∑
i=1

ϕiω
)

=

N∑
i=1

∫
M

d(ϕiω).

Thus, we see that if we can prove the theorem for each ϕiω, we will also prove it for
ω.
But now note that for each i, the diffeomorphism fi : Wi → Ui ∩ M restricts to a
diffeomorphism fi : Wi ∩ (Rk−1 × {0})→ (Ui ∩ ∂M), and, writing η = ϕiω, we have∫

M

dη =

∫
U∩M

dη =

∫
W

f∗ dη =

∫
W

d(f∗η) =

∫
W∩(Rk−1×{0})

f∗η =

∫
U∩(∂M)

η =

∫
∂M

η.

Exercise:
Let S1 ⊂ R2 be the unit circle and let α be the 1-form α = xdy. Compute

∫
S1 x dy in two ways:

• Using Stokes’ theorem
• Directly using the parametrization f : [0, 2π]→ S1 given by f(x) = (cosx, sinx).
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Reference: Spivak, pp. 126-130

Topics:

• The volume element
– We now want to consider a few important special cases of Stokes’ theorem. For this,

we will need a particular special differential form called the volume form.
– If M ⊂ Rn is an oriented k-manifold, then each TxM has an inner product and

orientation, and hence a volume element ω(x) ∈ Λk(TxM).
– This thus defines a k-form ω ∈ Ωk(M), the volume form or volume element, denoted

dV (even though it is not necessarily the exterior derivative of anything).
– Example: if M ⊂ R3 is an oriented surface and n(x) ∈ TxM is the outward unit

normal, then det(n(x), u, v) = 1 for any oriented orthonormal basis u, v of TxM .
Hence the volume form is ω(u, v) = det(n(x), u, v) = 〈n(x), u× v〉.

– More generally, if M ⊂ Rn is an oriented (n − 1)-manifold (i.e., hypersurface), then
ω(v1, . . . , vn−1) = det(n(x), v1, . . . , vn−1).

– The volume of M is defined to be vol(M) =
∫
M

dV , and we can also define the integral

of a function f : M → R as
∫
M
f dV .

– A remark on this notion of volume:
When we apply the volume element ω(x) to k tangent vectors (v1)p, . . . , (vk)p, the
result is the k-dimensional volume of the parallelepiped P spanned by v1, . . . , vk.
This volume can be defined, for example, by applying an orthogonal transformation
T : Rn → Rn so that P lies in Rk×{0}, and then taking the volume |det(Tv1, . . . , T vk)|
of the resulting parallelepiped in Rk.
Equivalently, we can choose an orthonormal basis u1, . . . , uk for Span(v1, . . . , vk), write

vi =
∑k
i=1 aijuj , and then vol(P ) = det(aij).

Most directly, if A is the matrix with columns v1, . . . , vk, then vol(P ) =
√

det(A>A).

If T : Rk → Rn is an injective linear transformation with matrix A, then
√

det(A>A)
is thus the volume of the parallelepiped spanned by Te1, . . . , T ek, i.e., the volume-
scaling factor of T (since vol(e1, . . . , ek) = 1). It is thus the direct generalization of the

volume scaling factor det(A) =
√

det(A>A) for a linear transformation T : Rn → Rn
with matrix A.

– We now note that if f : W ∼−→ U∩M is a parametrization, then vol(U∩M) =
∫
W
f∗ω =∫

W

√
det((f ′)>f ′), in direct analogy to the fact that for a diffeomorphism f : V1 → V2

between open subsets of Rn, we have vol(V2) =
∫
V1
|det f ′| =

∫
V1

√
det((f ′)>f ′).

– There are other equivalent characterizations of the volume as well; for instance, for a
smooth 1-manifold with boundary given by a smooth curve γ : [a, b]→ Rn, its volume

is given by limN→∞
∑N
i=1‖γ(a+ (i− 1)/N), γ(a+ i/N)‖.

• We now look at the various classical integration theorems of which Stokes’ theorem is a
common generalization.

• Green’s Theorem
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– Theorem 5-7: if M ⊂ R2 is a compact 2-manifold-with-boundary, then∫
∂M

f dx+ g dy =

∫
M

(∂g
∂x
− ∂f

∂y

)
dxdy

In order to state this theorem without reference to differential forms: if γ is a parametriza-
tion of ∂M (more precisely: ∂M is the image of a smooth map γ : [a, b] → R2 with
γ(a) = γ(b) such that γ|(a,b) : (a, b) → ∂M − {γ(a)} is a diffeomorphism), then the

left-hand side is ∫ b

a

[
f(γ(t))(γ1)′(t) + g(γ(t))(γ2)′(t)

]
dt.

– The theorem is literally just a special case of Stokes’ theorem.
• Divergence theorem

– Theorem 5-8: If M ⊂ Rk is a compact k-dimensional manifold with boundary and n
is the outward unit normal on ∂M , and F is a vector field on M , then∫

M

divF =

∫
∂M

〈F, n〉dV

– Most classically, this theorem is considered in the case n = 3.

– For the proof, let ω =
∑k
i=1(−1)i−1F i dx1∧· · ·∧ d̂xi∧· · ·∧dxk (where the hat denotes

omission). Then dω = divF dx1 ∧ · · · ∧ dxk.
– We now claim that ω = 〈F, n〉dV ∈ Ωk−1(∂M), whence the theorem follows from

Stokes’ theorem. (Warning: this equality is not true if these are considered as forms
on M ; i.e., they only agree when applied to tangent vectors to
partialM .)
More precisely, we claim that for any v1, . . . , vk−1 ∈ Tx(∂M), we have

(2) ni(x) dV (v1, . . . , vk−1) = (−1)−i−1(dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxk)(v1, . . . , vk−1),

from which it follows that 〈F, n〉dV =
∑k
i=1 F

ini dV = ω.
– To prove this claim, it suffices to prove it on any basis v1, . . . , vk−1 of Tx(∂M), which we

may in particular take to be an oriented orthonormal basis, so that n(x), v1, . . . , vk−1

is an orthonormal basis of Rkx.

– We may then write ei =
∑k−1
j=1 ajvj + bn(x), and we have b = 〈ei, n(x)〉 = ni(x).

– Recall, from a homework problem, that dxi1 ∧ · · · ∧ dxir (v1, . . . , vr), for i1 < . . . < ir,
is the determinant of the r× r-minor of the matrix (v1, . . . , vr) obtained by extracting
the rows i1, . . . , ir. Hence, the right-hand side of (2) is

det(ei, v1, . . . , vk−1) = det(
∑
j

ajvj + bn(x), v1, . . . , vk−1)

= det(ni(x)n(x), v1, . . . , vk−1)

= ni(x) det(n(x), v1, . . . , vk−1)

= ni(x) dV (v1, . . . , vk−1).

– QED
– The theorem shows the reason for the name “divergence”. If F (x) is the velocity

vector at x of a moving fluid (at some time), then
∫
∂M
〈F, n〉dV is the total rate of
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fluid “diverging” from M (or flowing in to M , if negative). Hence also divF (x) is the
rate of fluid diverging from an infinitesimal ball around x.

– An incompressible fluid one for which the amount entering any region should be the
same as the amount exiting, hence this corresponds to the condition divF = 0.

– According to Spivak, this interpretation of div is due to Maxwell. The divergence the-
orem arises in Maxwell’s equation as “Gauss’ law”, which says that the total “electric
flux” through ∂M is proportional to the total amount of charge contained within M .

• (The classical) Stokes’ Theorem
– This is the original theorem after which (for some reason) the general Stokes’ theorem

was named.
– Theorem 5-9: If M ⊂ R3 is a compact oriented surface with boundary and n is the

outward normal, and T is the oriented unit tangent vector to ∂M (i.e., T (x) ∈ Tx(∂M)
and dV (T ) = 1), then∫

M

〈∇ × F, n〉dV =

∫
∂M

〈F, T 〉dV.

– To prove it, set ω = F 1 dx+ F 2 dy + F 3 dz.
– Then we have ω = 〈F, T 〉dV . Indeed, any v ∈ Tx(∂M) is of the form aT (x) for some
a ∈ R, and we have

〈F, T 〉dV (aT )a〈F, T 〉 = 〈F, aT 〉 = ω(aT ).

– Next, we have

dω = (D1F
2 −D2F

1) dx ∧ dy+

(D2F
3 −D3F

2) dy ∧ dz+

(D3F
1 −D1F

3) dz ∧ dx

= (∇× F )3 dx ∧ dy+

(∇× F )1 dy ∧ dz+

(∇× F )2 dz ∧ dx.

Hence, for v, w ∈ Tx(∂M), we have dω(v, w) = (∇× F ) · (v × w).
– We now claim, similarly, that 〈∇×F, n〉dV = dω (whereupon the claim of the theorem

follows from Stokes’ theorem). Recall that for v, w ∈ Tx(∂M), we have dV (v, w) =
〈(v ×w), n(x)〉, where n(x) is the outward unit normal. But since v, w ∈ Tx(∂M), we
have v × w = an(x) for some a ∈ R. Hence

〈∇ × F, n〉dV (v, w) = 〈∇ × F, n〉〈v × w, n〉
= 〈∇ × F, a−1v × w〉〈an, n〉 = 〈∇ × F, v × w〉.

– QED
– Again, this explains the name “curl”: if F is the velocity field of a fluid, then by the

theorem, 〈∇×F, n〉(x) measures the total rate at which the fluid spins around a small
disc centred at x with normal vector n. If ∇×F = 0, we thus say that F is irrotational.

– Again, this arises in Maxwell’s equation, this time as Ampère’s law, which says that
the integral of the magnetic field generated by a constant current around any loop is
proportional to the total amount of current passing through any surface spanned by
the loop.
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Reference: Tapp, pp. 2-4

Topics:

• We now begin the second part of the course, where instead of studying general manifolds,
we will specifically study curves and surfaces in R2 and R3.
We now switch to using Tapp’s book.
This will involve a change of notation in some cases, which will take some getting used
to (but that’s really a good thing, since much of Spivak’s notation is pretty unusual and
inconvenient).
Also, some of the stuff in Tapp’s book overlaps with Spivak, so we will skip those parts.

• Parametrized curves in Rn
– A parametrized curve in Rn is a smooth map γ : I → Rn, where I ⊂ R is an (open,

closed, or half-closed, possibly infinite) interval (i.e., a connected 1-manifold-with-
boundary I ⊂ R).
We often think of the points t ∈ I as points in time, and thus of γ(t) as a moving
particle.

– γ is called a plane curve if n = 2 and a space curve if n = 3.
– Examples:

a circle γ(t) = (cos t, sin t)
a helix γ(t) = (cos t, sin t, t)
a graph γ(t) = (t, f(t))
a line γ(t) = p+ t~v.

– Example: a graph γ(t) = (t, f(t)).
– We write γ′(t) = (γ′1(t), . . . , γ′n(t)) for the derivative of γ.

We can think of γ′(t) as the velocity of the moving particle γ at time t.
Similarly, the second derivative γ′′ is called the acceleration.

– An aside on notation: in the textbook, you’ll find that Tapp writes the components of
γ as γ(t) = (x1(t), . . . , xn(t)). This notation reflects two useful notational conventions,
which we will probably be using again.
The first we have already discussed: on Rn, we use x1, . . . , xn not only to denote the
coordinates of a given point (which are real numbers), but also the coordinate functions
xi : Rn → R.
The second convention, is that, given a function f : X → Y between two sets and a
function g : Y → Z, it is often convenient to treat g as a function on X and simply
write g : X → Z as a shorthand for g ◦ f : X → Z.
In the case at hand, we have the curve γ : I → Rn and the functions xi : Rn →
R. According to this convention, then, we simply write xi : I → R for the function
xi ◦ γ : Rn → R. Thus xi(t) is “the i-th coordinate of the curve γ at time t”.

– (Note that we have switched from Spivak’s notation xi for coordinates to the more
usual xi – though in Spivak’s defense, his notation is consistent with a common and
very convenient general notation for tensors.)

– The speed of γ at time t is |γ′(t)|.
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– The arc length of γ between times t1, t2 is
∫ t2
t1
|γ′(t)|dt (note: this is negative if t2 < t1).

(As you will see in the homework, the arc length of a curve is the same as its volume
as a 1-manifold, as defined in Spivak.)

– γ is regular if γ′(t) is non-zero for all t, and is unit-speed or parametrized by arc-length
if |γ′(t)| = 1 for all t.
The latter name comes from the fact that in this case, up to a constant, t is precisely

the arc-length of γ between some fixed time t0 and t:
∫ t
t0
|γ(t)|dt =

∫ t
t0

1 = t− t0.

• Regular curves and 1-manifolds
– A regular curve, intuitively, is one that has a well-defined tangent line (more specifi-

cally, well-defined tangent direction) at each point.
The example γ(t) = (t3, t2) illustrates this.

– For a more extreme illustration, let f : R → R be a smooth function with f(t) = 0
for t ≤ 0 and f strictly increasing for t ≥ 0 (we saw that such functions exist when
discussing bump functions).
Then for any two curves γ1, γ2 : R→ Rn with γ1(0) = γ2(0) = 0 (for example γ1(t) =
(t, 0) and γ2(t) = (0, t)), consider the smooth curve

γ(t) =

{
γ1(f(−t)) t ≤ 0

γ2(f(t)) t ≥ 0.

– These examples show that the image of an irregular curve needn’t be a 1-manifold.
– However, on the positive side, if γ : I → Rn is regular, then each t ∈ I has an open

neighbourhood U ⊂ I such that γ(U) ⊂ Rn is a 1-manifold(-with-boundary).
– The more general fact is: if U ⊂ Rk is open and f : U → Rn is smooth and Df(p)

is injective for all p ∈ U , then each p ∈ U has a neighbourhood V ⊂ U such that
f(V ) ⊂ Rn is a k-manifold (and f : V → f(V ) is a diffeomorphism).

– This is Proposition 3.29 in Tapp, and was Theorem 5-2 in Spivak. (Though we didn’t
discuss it in class, it is in the lecture notes, in Lecture 20.) The proof uses the inverse
function theorem, and it is a sort of “dual” to the theorem saying that a level set f−1(c)
of a smooth map f : Rn → Rp with surjective derivative Df(p) for all p ∈ f−1(c) (i.e.,
c is a regular value) is a manifold.

– Note that for a regular curve γ : I → Rn, even though each point t ∈ I has a neigh-
bourhood whose image is a manifold, it needn’t be the case that the whole image γ(I)
is a manifold. An example is the curve γ(t) = (t3 − t, t2 − 1).

– Conversely, we know that if C ⊂ Rn is a 1-manifold, then there is a parametrization
of C near each point; i..e, for each p ∈ C, there is an open set U ⊂ Rn and a regular
curve γ : I → Rn whose image is C ∩ U .

• Eschewing Spivak’s tangent space convention
– While we’re at it, let us mention some changes of notation.
– We will drop Spivak’s convention that Rnp = TpRn is a different set for each p ∈ Rn.

From now on, we simply set TpRn = Rn. Thus, for ~v ∈ Rn, we can simply write
~v ∈ TpRn instead of ~vp ∈ TpRn.
Hence, similarly, for a k-manifold M ⊂ Rn and p ∈M , we have TpM ⊂ Rn.

– Also, note that Tapp’s notation for the derivative at p ∈M of a smooth map f : M →
N is dfp : TpM → Tf(p)N , rather than Df(p).
Other common notations are Dpf and dpf .
They are all fine; maybe I’ll try to use Tapp’s now that we are following that book.
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Exercises

• At least one person from each group should get out their laptop and go to https://www.

geogebra.org/calculator.
It is a great tool and a lot of fun, and will come in handy for this part of the course.

• Using it, plot the circle and the helix. After that, try:
• Tapp 1.12

• Tapp 1.13
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Reference: Tapp, pp. 9-13

Topics:

• Cauchy-Schwarz
– Let V be an inner product space.
– For ~x , ~y ∈ V , we have the Cauchy-Schwarz inequality |〈~x , ~y 〉| ≤ |~x ||~y |, with equality

iff ~x ‖ ~y (“~x and ~y are parallel”, i.e., linearly dependent).
To prove it: the general case is easily reduced to the case where |~x |, |~y | = 1.
In this case, we want to show |〈~x , ~y 〉| ≤ 1. We have

0 ≤ ‖~x ± ~y ‖2 = ‖~x ‖2 + ‖~y 2‖ ± 2〈~x , ~y 〉 = 2± 2〈~x , ~y 〉, which gives ±〈~x , ~y 〉 ≤ 1, hence
|〈~x , ~y 〉| ≤ 1, with equality iff ~x = ±~y .

– We thus have 〈~x ,~y 〉|~x ||~y | ∈ [−1, 1] We now define the angle between two non-zero vectors

~x , ~y ∈ V as ∠(~x , ~y ) ..= arccos 〈~x ,~y 〉|~x ||~y | ∈ [−1, 1] ∈ [0, π], so that we have the familiar

formula 〈~x , ~y 〉 = |~x ||~y | cos∠(~x , ~y ).
• Orthogonal projection

– Again let V be an inner product space.

– Given ~y ∈ V is non-zero, then any ~x can be uniquely decomposed as ~x = ~x ‖ + ~x⊥,

where ~x ‖ ‖ ~y and ~x⊥ ⊥ ~y .

– Indeed, we take ~x ‖ = 〈~x ,~y 〉
|~y |2 ~y and ~x⊥ = ~x − ~x ‖.

Uniqueness follows from the fact that if ~x ‖ + ~x⊥ = ~̃x‖ + ~̃x⊥ with ~x ‖, ~̃x‖ ‖ ~y and

~x⊥, ~̃x⊥ ⊥ ~y , then ~x ‖ − ~̃x‖ = ~̃x⊥ − ~x⊥ is both parallel and perpendicular to ~y , hence
zero.

– The above formulas for ~x 7→ ~x ‖ and ~x 7→ ~x⊥ define linear maps Proj~y : V → Span(~y )

and ProjSpan(~y )⊥ : V → Span(~y )⊥, where Span(~y )⊥ = {~z ∈ V | ~z ⊥ ~y } is the or-

thogonal complement of Span(~y ). These are called orthogonal projection operators or
orthogonal projection maps.

– Now assume V is finite-dimensional.
– We then, have more generally, for any linear subspace W ⊂ V , and ~x ∈ V may

be uniquely decomposed as ~x = ~x ‖ + ~x⊥, where ~x ‖ ∈ W and ~x⊥ ∈ W⊥ ..=
{~z ∈W | ~z ⊥W}, and where ~z ⊥ V means ~z ⊥ ~w for all ~w ∈W .
Explicitly, if ~y 1, . . . , ~y k is an orthonormal basis for W (which exists by the Gram-

Schmidt process), then ~x ‖ = 〈~x , ~y 1〉~y 1 + · · ·+ 〈~x , ~y k〉~y k.

We then set ~x⊥ = ~x − ~x ‖.
Uniqueness follows from the same argument as above.

– Again, the formulas for ~x 7→ ~x ‖ and ~x 7→ ~x⊥ define (linear) orthogonal projection
maps ProjW : V →W and ProjW⊥ : V →W⊥.

• The fundamental fact about constant speed curves
– If γ : I → Rn has constant distance from the origin |γ′(t)| = C for all t ∈ I, then
〈γ, γ′〉 = 0.

– An aside on points and vectors: as we mentioned last time, we are no longer distin-
guishing tangent vectors from elements in Rn. So given a curve γ, both its position
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γ(t) at time t and its velocity vector γ′(t) are simply elements of Rn.
Geometrically, this is just the fact that, given a point, we have the corresponding vec-
tor from the origin to the point, and given a vector, we have the point which is the
endpoint of the vector when we position it at the origin.
One should always be wary of formulas like 〈γ, γ′〉 = 0 above which mix up points
and vectors; there is something “ungeometric” about it, since it depends on where we
situate the origin. In this particular case, the geometric interpretation of the formula
is the (obvious) fact that if a curve lies on a given sphere (around any point!), then
the curve is always tangent to the sphere (this is because the tangent space to a point
on a sphere is the orthogonal complement to the vector connecting that point to the
origin).

– However, there is a far more important special case of this formula: that if γ has
constant speed |γ′(t)| = C for all t, then 〈γ′, γ′′〉 = 0.
This formula is no longer suspicious since it is genuinely comparing two vectors (rather
than a point and a vector).
It’s meaning is: a constant speed curve is always accelerating in a direction perpen-
dicular to its direction of motion.

– This formula follows immediately from the Leibniz rule for the inner product d
dt 〈F (t), G(t)〉 =

〈F ′(t), G(t)〉+ 〈F (t), G′(t)〉 (which in turn follows from the usual product rule).
Indeed, if |γ| is constant, then 0 = d

dt 〈γ(t), γ(t)〉 = 2〈γ, γ′〉.
(Here, we made use of another convenient abuse of notation: we may sometimes omit
the argument to a function and, as we did here, just write γ instead of γ(t).)

Exercises

• Tapp 1.8
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Reference: Tapp, pp. 14-20

Topics:

• The shortest path between two points
– Given points p,q ∈ Rn, we have the curve γ(t) = p + t(q− p) connecting them. This

curve has length
∫ 1

0
|γ′(t)|dt =

∫ 1

0
|q− p|dt = |q− p|.

– Theorem: any curve γ with γ(a) = p and γ(b) = q has arc-length
∫ b
a
|γ′(t)|dt ≥ |q− p|.

– For the proof, write γ′(t)‖ and γ′(t)⊥ for the orthogonal decomposition with respect
to the unit vector ~n = q−p

|q−p| . Then since γ′(t)‖ ⊥ γ′(t)⊥, we have

|γ′(t)|2 = |γ′(t)‖ + γ′(t)⊥|2 = |γ′(t)‖|2 + |γ′(t)⊥|2 ≥ |γ′(t)‖|2

and hence, using that γ′(t)‖ = Proj~n γ
′(t) = 〈γ′(t), ~n〉~n:∫ b

a

|γ′(t)|dt ≥
∫ b

a

|γ′(t)‖|dt =

∫ b

a

|〈γ′(t), ~n〉|dt ≥
∫ b

a

〈γ′(t), ~n〉dt

=

∫ b

a

d

dt
〈γ(t), ~n〉dt = 〈γ(b), ~n〉 − 〈γ(a), ~n〉 = 〈q− p, ~n〉 = |q− p|.

• More on acceleration
– Given a curve γ, Tapp uses the notation ~v = γ′ and ~a = γ′′ for its velocity and

acceleration vectors.
– Our intuition about acceleration is aided by Newton’s law ~F (t) = m~a (t), where ~F is

the force acting on the particle γ.
– We can always decompose the acceleration orthogonally with respect to the velocity

~a = ~a ‖ + ~a⊥ with ~a ‖ ‖ ~v and ~a⊥ ⊥ ~v .

– We already observed that if γ is unit-speed then ~a ‖ = 0.

– More generally, the size of ~a ‖ (or more precisely, the component of ~a in the direction

of ~v , the absolute value of which is the size of ~a ‖) is the rate of change of the speed
of γ:
d
dt |~v (t)| = 〈~a ,~v 〉

|~v | .

– Indeed, |~v | · d
dt |~v | =

1
2

d
dt |~v |

2 = 1
2

d
dt 〈~v ,~v 〉 = 〈~v ′, ~v 〉 = 〈~a ,~v 〉.

– The size of the perpendicular component |~a⊥| represents two different things: it should
be larger if γ is moving faster, and also if γ is curving more sharply.

– We will next separate out these two effects, and then concentrate on the second one:
curvature.

• Reparametrization
– Given a regular curve γ : I → Rn, a reparametrization of γ is a curve of the form
γ̃ = γ ◦ ϕ : Ĩ → Rn for some diffeomorphism ϕ : Ĩ → I (here, diffeomorphism just
means bijection with non-vanishing derivative ϕ′).

– Note that any reparametrization of a regular curve is regular.
– Also, reparametrization defines an equivalence relation on curves (i.e., this relation

is reflexive (each curve is a reparametrization of itself), symmetric (each curve is a
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reparametrization of each of its reparametrizations), and transitive (a reparametriza-
tion of a reparametrization of γ is a reparametrization of γ)).

– Any reparametrization of γ has the same image as γ.
– The image γ(I) = {γ(t) | t ∈ I} is also called the trace of γ.
– A reparametrization γ̃◦ϕ of γ is orientation-preserving if ϕ is an orientation-preserving

diffeomorphism, which here simply means ϕ′ > 0; and otherwise it is orientation-
reversing (so ϕ′ < 0).

Exercises

• Tapp 1.9
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Reference: Tapp, pp. 20-23

Topics:

• Arc-length reparametrization
– Proposition 1.25: any regular curve γ : I → Rn can be reparametrized by arc-length,

i.e., there is a reparametrization of γ which is a unit-speed curve.

To prove this, fix t0 ∈ I and let s =
∫ t

0
|γ′|dt.

Then s is a smooth function and s′ = |γ′| > 0. It follows that s : I → s(I) is a
diffeomorphism.
Now consider the reparametrization γ̃ = γ ◦ s−1. We have

|γ′| = |(γ̃ ◦ s)′| = |(γ̃′ ◦ s) · s′| = |γ̃′ ◦ s| · |γ′|

and hence |γ̃′ ◦ s| = 1, and hence |γ̃′| = 1 since s is a bijection.
QED

– It is very good to know that a curve can always be reparametrized by arc-length, but
in practice it is usually impossible to explicitly compute the reparametrization. The

reason is that this requires finding the inverse of the function s(t) =
∫ t
t0
|γ′(t)|.

• Closed curves and periodic curves
– A closed curve is a regular curve γ : [a, b] → Rn such that γ(a) = γ(b) and all the

derivatives match: γ(i)(a) = γ(i)(b) for all i > 0.
– It is a simple closed curve if it is injective on [a, b).
– A curve γ : R→ Rn is T -periodic if γ(t) = γ(t+ T ) for all t ∈ R.
– Proposition 1.27: γ : [a, b] → Rn is closed if and only if there is a (b − a)-periodic

regular curve γ̂ : R→ Rn such that γ(t) = γ̂(t) for all t ∈ [a, b].
In one direction, we can simply define γ̂ by γ̂(t+N(b−a)) = γ(t) for all N ∈ Z, which
is then regular and (b− a)-periodic and has the desired property.
On the other hand, given γ̂, it is clear that γ : [a, b] → Rn defined by γ(t) = γ̂(t) is
closed.

– For closed curves, we make use of a slightly modified notion of reparametrization, since
we also want to be able to move the “starting point”. There is also the issue that a
general reparametrization may no longer have matching derivatives at the endpoints,
and therefore no longer be closed.

– Thus, for γ : [a, b] → Rn a closed curve, with associated (b − a)-periodic curve γ̂, and
for λ ∈ R, we write γλ for the restriction of γ̂ to [a+ λ, b+ λ].

– We then define a closed-reparametrization of γ (Tapp just calls this a reparametriza-
tion) to be a reparametrization γ̃ = γλ◦ϕ : [c, d]→ Rn of γλ for some λ ∈ R, where the
diffeomorphism ϕ : [c, d]→ [a+λ, b+λ] has the additional property that its derivatives
match at the endpoints: ϕ(i)(c) = ϕ(i)(d) for all i > 0.
It follows that γ̃ is again a closed curve.

– Closed-reparametrization is again an equivalence relation.
– We also have (Proposition 1.29): two simple closed curves have the same trace if and

only if each is a closed-reparametrization of the other.
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– Note that this fails for non-simply closed curves, e.g., (cos, sin) : [0, 2π] → R2 and
(cos, sin) : [0, 4π]→ R2 have the same trace.

– One direction of the proposition is obvious. For the other direction, suppose γ1 : [a, b]→
Rn and γ2 : [c, d]→ Rn have the same trace.
By applying a closed-reparametrization to γ2, we can assume γ2(c) = γ1(a) and that
〈γ′2(c), γ′1(a)〉 > 0.
Now the restrictions γ1|[a,b) and γ1|(a,b] are bijections by assumption, and γ1 is a local

diffeomorphism, as is any regular curve.
Hence we may define ϕ : [c, d]→ [a, b] by ϕ(u) = γ−1

1 (γ2(u)) for u ∈ (c, d) and ϕ(u) = a
and ϕ(u) = b.
It follows that ϕ is a diffeomorphism, and by definition, we have γ2 = γ1 ◦ ϕ. More-
over, since γ1, γ2 are both closed curves, it follows that the derivatives of ϕ agree at
the endpoints.
Thus γ2 is a closed-reparametrization of γ1.

Exercises

• Tapp 1.16
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Reference: Tapp, pp. 24-27

Topics:

• Curvature
– We want to quantify how sharply a (regular) curve is turning.

– As we mentioned, this should be measured by ~a⊥, adjusted to account for the effects
of velocity.

– One way of saying this is that the curvature function κ(t) should be independent of
the parametrization; i.e., if γ̃ = γ ◦ ϕ is a reparametrization of γ, we should have that
the curvature κ̃ of γ̃ satisfies κ̃ = κ ◦ ϕ.

– Another desideratum is simply that as the radius of a circle grows, its curvature should
decrease. Specifically, we will have that a circle of radius R have curvature κ(t) = 1/R.

– To see how to fulfill the first condition, let ~̃a be the acceleration of γ̃, and let us
compute ~̃a⊥.
We have

~̃v(u) = γ̃′(u) = ϕ′(u) · γ′(ϕ(u)) = ϕ′(u) · ~v (ϕ(u))

and
~̃a(u) = γ̃′′(u) = ϕ′(u)2 · ~a (ϕ(u)) + ϕ′′(u) · ~v (ϕ(u))

and hence
~̃a⊥(u) = ϕ′(u)2 · ~a⊥(ϕ(u)).

In conclusion (using our usual abuse of notation and writing ~v and ~a⊥ in place of ~v ◦ϕ
and ~a⊥ ◦ ϕ):

~̃v = (ϕ′) · ~v and ~̃a⊥ = (ϕ′)2~a⊥.

– So we see that the reparametrization scales ~v and ~a by a factor ϕ′ and (ϕ′)2, respec-

tively, so that the quantity |~a
⊥|
|~v |2 is inavariant:

|~a⊥|
|~v |2

=
|~̃a⊥|
|~̃v|2

.

– We therefore define the curvature of γ to be κ(t) = |~a⊥|
|~v |2 .

– We then have |~a⊥| = κ(t) · |~v |2, in accordance with out intuition that the size of ~a⊥

should increase both with curvature and speed.
– Note that for a circle γ(t) = (R cos(t), R sin(t)), we have ~v = (−R sin t, R cos t) and
~a = (−R cos t,−R sin t) (note that ~v ⊥ ~a as it should be, since γ is unit speed;
moreover, ~a points toward the origin, indicating that there is a “central force”) and

hence κ(t) = |~a⊥|/|~v |2 = |~a |/|~v |2 = R/R2 = 1/R, as desired.
– Proposition 1.31: if γ is unit speed, then we simply have κ(t) = |~a (t)| (since then

~a = ~a⊥ and |~v | = 1.

– This gives another perspective on curvature. We can imagine the tangent vector ~(t) of
a unit speed curve as tracing out a curve on the unit-sphere, indicating at each point
in time in which direction the curve is moving.
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– Then the curvature tells us how fast this “direction-curve” is moving, or in other words
how fast the direction of γ is changing.

• Unit tangent and normal
– If γ is a regular curve, we define its unit tangent (at time t) vector to be ~t (t) ..= ~v(t)/|~t |.
– The unit normal vector of γ is only defined whenever κ(t) 6= 0, and is given by
~n(t) = ~a⊥(t)/|~a⊥(t)|.

– By construction, {~t , ~n} is orthonormal.

– Proposition 1.34: if γ is regular, then κ(t) = |~t ′|/|~v |.
We have

~a = ~v ′ = (|~v |~t )′ = |~v |′~t + |v|~t ′.
Since |~t | is constant, we have ~t ⊥ ~t ′, and hence ~a ‖ = |~v |′~t and ~a⊥ = |~v |~t ′.
Hence κ = |~a⊥|/|~v |2 = |~t |/|~v |.

– Thus, can say in general, that the rate of change of the direction “per unit of speed”.

– Also note that the proof showed that ~a ‖ = |~v |′~t , as we saw before: the component of
~a along ~v is the rate of change of speed.

– Next, the above also gave ~t
′ ‖ ~a⊥, whence

~n =
~a⊥

|~a⊥|
=

~t
′

|~t ′|
.

Thee both capture the idea that ~n points in the direction in which γ is bending.
– Combining the above equations gives Proposition 1.35: if γ is regular, then whenever

κ 6= 0, we have ~t
′

= κ|~v |~n, and hence

κ|~v | = 〈~t ′, ~n〉 = −〈~n′,~t 〉
The last equation uses the general fact (Proposition 1.17 (2)) that if F,G : I → Rn are
orthogonal, then 〈F ′, G〉 = −〈F,G′〉, as follows immediately from the Leibniz rule for
the inner product.
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Reference: Tapp, pp. 28-29

Topics:

• Recap of curvature, unit tangent vector, and unit normal vector identities
– First, the Leibniz rule: given F,G : I → Rn, we have 〈F,G〉′ = 〈F ′, G〉+ 〈F,G′〉.

Hence, if |F (t)| = 1 for all t, then F ⊥ F ′.
And if F (t) ⊥ G(t) for all t, then 〈F ′, G〉 = −〈F,G′〉.

– Definitions (for a regular curve γ):

~v = γ′ ~a = γ′′ ~a ‖ =
〈~a ,~v 〉
|~v |2

~v ~a⊥ = ~a − ~a ‖ ~t =
~v

|~v |
~n =

~a⊥

|~a⊥|
– For a unit-speed curve γ (i.e., |~v | = 1):

~a ‖ = 0 ~a⊥ = ~a ~t = ~v ~n =
~a

|~a |
– Definition of curvature:

For a unit speed curve: κ = |~a | = |~a⊥|

In general: κ =
|~a⊥|
|~v |2

– The unit tangent vector bends toward the unit normal:

~t
′ ‖ ~n hence ~n =

~t
′

|~t ′|
– Components of the acceleration in terms of ~t :

~a ‖ = |~v |′~t ~a⊥ = |~v |~t ′ (In unit speed case: ~a = ~a⊥ = ~t
′
.)

– The size of ~t
′
:

For a unit speed curve: ~t
′

= κ~n Hence: κ = 〈~t ′, ~n〉 = −〈~t , ~n′〉

In general: ~t
′

= κ|~v |~n Hence: κ|~v | = 〈~t ′, ~n〉 = −〈~t , ~n′〉.
– The curvature is the speed at which the direction changes:

For a unit speed curve: κ = |~t ′|

In general: κ =
|~t ′|
|~v |

• Curvature of a graph at a critical point
– Consider the graph γ(t) = (t, f(t)) at a critical point f ′(t0) = 0. We have ~v =

(1, f ′) and ~a = (0, f ′′), and hence ~v (t0) = (1, 0) and ~a (t0) = (0, f ′′(t0)). These are

orthogonal, so ~a⊥(t0) = ~a (t0), and hence

κ(t0) =
|~a (t0)|
|~v (t0)|2

= |f ′′(t0)|.
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Thus, in this case, we see that the curvature is the “concavity” of f at the critical
point.
(For example, if f is a parabola f(t) = a(t− t0)2 + b centered at t0, then κ(t0) = 2a.)

– We can generalize this to an arbitrary point on a regular plane curve by rotating it so
that ~t is horizontal and using the implicit function theorem. In fact, we will generalize
this discussion to an arbitrary (regular) curve in Rn.

• Review of (single-variable) Taylor polynomial
– Theorem: for any smooth function f : R → R and any x0 ∈ R, there is a smooth

function g such that

f(x) =

n∑
k=0

f (k)(x0)

k!
(x− x0)k + g(x) · (x− x0)n+1.

– (The firs term is called the degree n Taylor polynomial of f .)
– The case n = 1 is called (the single-variable) Hadamard’s lemma. The proof (in the

case x0 = 0, to make the notation simpler) is

f(x) = f(0) +

∫ 1

0

d

dt
f
(
tx
)

dt = f(0) + x

∫ 1

0

f ′
(
tx
)

dt

and so we set g(x) ..=
∫ 1

0
f ′(tx) dt, and we are done.

– The case n = 2 follows from n = 1 by using Hadamard’s lemma again: if f(x) =
f(0) + x · g(x), then we see that f ′(0) = g(0), and so by Hadamard’s lemma there is a
smooth function h with g(x) = g(0) + x · h(x) = f ′(0) + x · h(x) and hence

f(x) = f(0) + x · (f ′(0) + x · h(x)) = f(0) + x · f ′(0) + x2 · h(x).

– Then the case n = 3 follows by Hadamard’s lemma again: we find that f ′′(0)
2 = h(0)

and hence by Hadamard’s lemma h(x) = f ′′(0)
2 + x · k(x) and hence

f(x) = f(0) + x · f ′(0) + x2 ·
(f ′′(0)

2
+ x · k(x)

)
= f(0) + x · f ′(0) +

f ′′(0)

2
x2 + k(x) · x3.

– And so on. (The general case is proven by induction.)
– For all of the elementary functions f (the trigonometric functions and their inverses, the

exponential and logarithm, and all functions built out of these by arithmetic operations
and composition), we have the stronger fact that f is equal to its Taylor series f(x) =∑∞
k=0

f(k)(x0)
k! (x− x0)k (at least in some neighbourhood of x0).

– Functions with this property are called analytic.
Warning: not every smooth function is analytic!
For example, in our study of bump functions, we saw smooth f such that f (k)(0) = 0
for all k and yet f(x) > 0 for all x > 0.

– In light of Taylor’s theorem, every smooth function f has a “second-order approxima-
tion” near any x0 ∈ R which for a critical point x0 is a parabola a(x−x0)2 +b centered
at x0 and tangent to the graph of f . As above, the curvature of the graph of f at x0

is then 2a.

Exercise

• Tapp 1.38
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(The helix in question is γ(t) = (cos t, sin t, t).)
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Reference: Tapp, pp. 29-35

Topics:

• Osculating planes and circles
– Assume that γ : I → Rn is unit speed and fix t0 ∈ I with κ(t0) 6= 0. The (component-

wise) second-order Taylor polynomial of γ at t0 is

γ(t0 + h) ' γ(t0) + hγ′(t0) +
h2

2
γ′′(t0)

= γ(t0) + h~t +
κh2

2
~n

– The osculating plane of γ at t0 is Span(~t (t0), ~n(t0)) = Span(~v (t0),~a (t0)).
(It is convenient to define it in this way as a linear subspace of Rn, but it’s more natural
to think of it centered at γ(t0), i.e., to consider the plane {γ(t0) + x~t (t0) + y~n(t0) | x, y ∈ R}.)

– Hence, we see that near γ(t0), the trace of γ is approximated by the parabola (x, y) =

(h, κh
2

2 ), i.e., y = κx2/2, of concavity κ in the osculating plane.
– Next, the osculating circle to γ at t0 is the circle of radius 1/κ(t0) in the osculating

plane centered at the origin. It can be parametrized as

c(s) =
1

κ(t0)
(cos(s)~t + sin(s)~n), s ∈ [0, 2π].

– Again, it is more natural to consider the circle situated elsewhere, namely centered at
ε(t0) = γ(t0) + 1

κ(t0)~n, so that it is tangent to γ at γ(t0).

– Any three non-colinear points determine a circle, and the osculating circle was orig-
inally defined to be the circle passing through γ(t0) and two infinitesimally nearby
points. A definition in this spirit can still be made using limits.
(If the definition is made this way, then the curvature can be defined as the reciprocal
of the radius (which is possibly ∞) of the osculating circle.)

– The centers ε(t) of the osculating circles at γ(t) themselves form a curve, called the
evolute of γ.

• Plane curves
– In general, we can only talk about the size of the curvature, as a positive number.
– In the plane, we can also ask whether the curve is bending left or right.
– Define R90 : R2 → R2 (or just R for short) to be the rotation by 90 degrees map
R90(x, y) = (−y, x).

– This is also multiplication by i in the complex plane.
– Note that for a curve γ with non-zero curvature, we have R~t = ~n if γ is bending left,

and R~t = −~n if it is bending right.

– Recall that for a unit-speed curve γ, we have ~t
′

= κ~n and hence κ = 〈~t ′, ~n〉.
– We thus defined the signed curvature of (the unit-speed curve γ) to be κs = 〈~t ′, R~t 〉.
– We thus have ~t

′
= κs · R~t , and κ = |κs| (and specifically, κ = κs when γ is bending

left and κ = −κs when γ is bending right).
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– For a general regular curve γ, we have ~t
′

= κ|~v |~n and hence κ|~v | = 〈~t ′, ~n〉, and we

thus define κs = 〈~t ′,R~t 〉
|~v | .

– This quantity is invariant under orientation-preserving reparametrizations. Unsurpris-
ingly, an orientation-reversing reparametrizations changes its sign.

• Signed curvature as rate of change of angle.
– We have interpreted the curvature of a unit-speed curve as the speed of the change of

direction of γ.
– For a plane curve, the direction is simply given by an angle. Let us now interpret the

signed curvature as the rate of change of the angle (positive if turning left, negative if
turning right).

– There is one issue with this, which is that the angle is only defined up to a multiple
of 2π; so first we have to show that we can consistently assign an angle of γ′ at each
point along the curve.

– Proposition 1.39: if γ : I → R2 is a regular curve, then there is a smooth angle function
θ : I → R with ~t (t) = (cos θ(t), sin θ(t)) for all t.

Exercises
– Show that the curvature of a regular curve is constantly zero if and only if its trace

lies on a line.
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Reference: Tapp, pp. 35-43

Topics:

• Signed curvature as rate of change of angle.
– Returning to Proposition 1.39: if γ : I → R2 is a regular curve, then there is a smooth

angle function θ : I → R with ~t (t) = (cos θ(t), sin θ(t)) for all t.
This function is unique up to adding an integer multiple of 2π.
(More generally, for any F : I → R2 with |F | = 1, there is an angle function θ with
F (t) = (cos θ(t), sin θ(t)).)

– The uniqueness is clear, since given two such functions θ1, θ2, we have that θ1(t)−θ2(t)
is a multiple of 2π for each t, and since θ1 − θ2 is continuous, it must be constant.

– Before proving the existence, let us check that κs = θ′ for a unit-speed curve.

– By definition, we have κs = 〈~t ′, R~t 〉.
Since ~t = (cos θ, sin θ) by definition, we thus have ~t

′
= (−θ′ sin θ, θ′ cos θ) = θ′ · R~t

and hence κs = 〈θ′ ·R~t ,R~t 〉 = θ′, as desired.
– Now fix some t0 ∈ I and some θ0 such that ~t (t0) = (cos θ0, sin θ0).
– From the above observation, we see that we have no choice but to define θ(t) =∫ t

t0
κs(u) du.

– We need to check that with this definition, we indeed have ~t (t) = (cos θ(t), sin θ(t)) for
all t.

– For this, we note that in a small neighbourhood U ⊂ I of any t ∈ I, we can find a
“local” angle function Θ with ~t (t) = (cos Θ(t), sin Θ(t)) for all t ∈ U .
This is because, by continuity of ~t , the image any sufficiently small U will lie in
S1−{(1, 0)} or S1−{(0, 1)}, and so we can define Θ by composing ~t : U → S1 with the
inverse of the diffeomorphism (cos, sin) : (0, 2π)→ S1−{(1, 0)} or (cos, sin) : (−π, π)→
S1 − {(−1, 0)}.

– Now, to see that θ has the desired property, let Î ⊂ I be the set of points t with
~t (t) = (cos θ(t), sin θ(t)). We want to show Î = I.

– We have Î 6= ∅ since t0 ∈ Î.

– We then show that Î is both open and closed in I, and the appeal to the general fact
that an open and closed subset of a connected set must be the whole set.

– Î is closed because the set where two continuous functions (here, ~t and (cos θ, sin θ))
agree is always closed.

– It is open by the above observation, since near any point t, we have a local angle

function Θ, and if t ∈ Î, then we can assume that Θ(t) = θ(t) by adding a multiple
of 2π to Θ. But now Θ′ = κs = θ, and they agree at one point, hence they must be
equal.

– This ends the proof.
– Using the angle function θ, we can define the “number of times a closed plane curve

turns around”.
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– Namely, if γ : [a, b] → R2 is a closed plane curve, we define its rotation index to be
1

2π (θ(b)− θ(a)), where θ is an angle function.
– This is independent of the chosen angle function, since they always differ by a constant,

and it is always an integer since we have ~t (a) = ~t (b) and hence θ(a) and θ(b) differ by
a multiple of 2π.

• Space curves; the Frenet frame
– We now consider the curvature of curves in R3; here, signed curvature no longer makes

sense.
– We recall some basic properties of the cross product.

∗ Definition: ~u × ~v = (u2v3 − u3v2, u3v1 − u1v3, u1v2 − v2u3).
∗ It is an alternating, bilinear operation.
∗ When ~u ,~v are independent, ~u×~v is orthogonal to ~u ,~v , and moreover (~u ,~v , ~u×
~v ) is an oriented basis (i.e., det(~u ,~v , ~u × ~v ) > 0).
∗ In fact, we have det(~u ,~v , ~w ) = 〈~u × ~v , ~w 〉 for any ~u ,~v , ~w (which implies the

previous fact by taking ~w = ~u × ~v ).
∗ We have |~u × ~v | = |~u ||~v | sin θ where θ = ∠(~u ,~v ).
∗ (Together with the above facts, this characterizes ~u × ~v uniquely.)
∗ If F,G : I → R3 are smooth, then (F ×G)′ = F ′×G+F ×G′. (More generally,

this holds for any bilinear operation.)
– Proposition 1.46: if γ is a regular space curve, then

κ =
|~v × ~a |
|~v |3

.

Recalling that κ = |~a⊥|/|~v |2, this follows immediately from the fact that |~a⊥| =
|~a | · sin θ = |~v × ~a |/|~v |.

– Next, using the cross product, we extend our orthogonal set (~t , ~n) to an orthogonal
basis: if γ is a regular curve and t ∈ I satisfies κ(t) = 0, we define the Frenet frame to

be the orthonormal basis (~t (t), ~n(t),~b (t)) of R3, where ~b (t) ..= ~t (t)×~n(t) is called the
unit binormal vector of γ.

Recall that ~t = ~v /|~v | and ~n = ~a⊥/|~a⊥| = |~t ′||~t |′.
– Note that the vector ~b is a unit-normal vector to the osculating plane. Hence the curve

0 +~b (t) on S2 indicates the “tilt” of the osculating plane at each point in time.
• Torsion

– We now want to define the torsion as the speed at which this tilt changes, i.e., the

speed of the curve ~b (t). As first pass, this would mean simply taking |~b |′ (in the unit-

speed case, or |~b |′/|~v | in general), but we will see that we can actually define a signed

quantity, indicating whether ~b is twisting to the left or right.

– To this end, note that ~b
′
⊥ ~b (since |~b | = 1) and ~b

′
⊥ ~t , since 〈~b

′
,~t 〉 = −~b~b ,~t ′ = 0

(since 〈~b ,~t 〉 = 0 and since ~t
′ ‖ ~n ⊥ ~b ).

– It follows that ~b
′

is a multiple of ~n, namely ~b
′

= 〈~b
′
, ~n〉~n, which is positive if ~b is

twisting toward ~n, and negative otherwise.
– We thus define the torsion of a unit-speed curve γ with non-vanishing curvature to be

τ = −〈~b
′
, ~n〉. (Some people define torsion to have the opposite sign.)
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– For a general regular curve (still with κ = 0), we define τ = −〈~b ′,~n〉
|~v | ; one checks that τ is

invariant under reparametrization (not just orientation-preserving reparametrization!).
– Thus, the torsion is positive if the Frenet frame is twisting “away” from the direction

of curvature, and negative if it is twisting “towards” it.
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Reference: Tapp, pp. 44-56

Topics:

• Torsion and planarity
– Proposition 1.51: if γ is a regular space curve with non-vanishing curvature, then the

trace of τ lies in a plane if and only if τ = 0.
– First suppose that γ is in the (x, y)-plane, so that γ = (x(t), y(t), 0); hence ~v = (x′, t′, 0)

and hence ~v and thus ~t lie in the (x, y)-plane. Next, ~a = (x′′, y′′, 0), hence ~a , hence

also ~a⊥ and ~n, lie in the (x, y)-plane.

Thus~b is orthogonal to the (x, y)-plane, and hence constant by continuity. Thus~b
′

= 0
and hence τ = 0.

– The argument for a general plane P is similar. Letting ~u be a unit normal to the

plane, we find that ~t ⊥ ~u and ~n ⊥ ~u and thus conclude ~b = ±~v is constant and hence
~b
′

= 0 and τ = 0.
– Conversely, suppose that τ = 0, so that ~b = (a, b, c) is constant. We claim that

d ..= 〈γ,~b 〉 is constant, so that γ lies in the plane ax+ by + cz = d.

Indeed, we have 〈γ,~b 〉′ = 〈γ′,~b 〉+ 〈γ,~b
′
〉 = 0 + 0.

• Third-order Taylor polynomial
– Let γ : I → R3 be a unit-speed space curve with non-zero curvature at t0 ∈ I. Its

third-order Taylor polynomial is:

γ(t0 + h) ' γ(t0) + γ′(t0)h+
γ′′(t0)

2
h2 +

γ′′′(t0)

6
h3.

We have (remembering that γ is unit-speed)

γ′ = ~t γ′′ = ~t
′

= κ~n γ′′′ = (κ~n) = κ′~n+ κ~n′.

(where we are writing ~t , ~n,~b for ~t (t0), ~n(t0),~b (t0)).
– Let’s compute ~n′ (in general, for a regular (not necessarily unit-speed) curve with

non-vanishing curvature). We have ~n = ~b × ~t and hence

~n′ = ~b
′
× ~t +~b × ~t ′ = −|~v |τ~n× ~t + |~v |κ~b × ~n = −|~v |κ~t + |~v |κ~b .

– Combining this with the definitions of κ and τ , we obtain

~t
′

= |~v |κ~n
~n′ = −|~v |κ~t +|~v |τ~b
~b
′

= −|~v |τ~n
or in brief:  ~tvn

vb

′ = |~v |

 0 κ 0
−κ 0 τ
0 −τ 0

~t~n
~b

 .
These are called the Frenet-Serret equations, a system of ordinary differential equations
suggestively involving a skew-symmetric matrix.
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– Returning to the matter at hand, we thus have

γ(t0 + h) ' γ(t0) + h~t +
h2κ

2
~n+

h3

6
(κ′~n− κ2~t + κτ~b ).

Writing this in the coordinates

γ(t0) + x~t + y~n+ z~b ,

we obtain

x = h −κ
2

6 h
3

y = κ
2h

2 κ′

6 h
3

z = κτ 6h3.

– In particular, since κ is always positive, we see that z is increasing if and only if τ > 0.
– In conclusion: if the torsion is zero, then the curve lies inside the osculation plane;

otherwise the sign of the torsion indicates whether the curve is moving upwards or
downwards through the osculating plane.

• Rigid motions
– A rigid motion (or isometry) of Rn is a map f : Rn → Rn such that |f(p)− f(q)| =
|p− q| for all p,q ∈ Rn.

– Any translation T~v (p) = p + ~v with ~v ∈ Rn is clearly a rigid motion.
– Next, if A ∈ O(n) an orthogonal matrix (here, O(N) ⊂ Rn×n is the set of orthogonal

matrices), then LA(p) = A · p is a rigid motion.
– Recall that A being orthogonal means that A>A = I or equivalently that the columns

of A form an orthonormal basis.
The first condition is equivalent to ~u>A>A~v = ~u>I~v for all ~u ,~v ∈ Rn, i.e., that
〈A~u ,A~v 〉 = 〈~u ,~v 〉, i.e., that A preserves the inner product.
This obviously implies that 〈A~v 〉 = |~v | for all ~v , i.e., that A preserves lengths.
But conversely, since 〈~u ,~v 〉 = 1

2 (|~u + ~v |2 − |~u |2 − |~v |2), if A preserves lengths, then
it preserves the inner product, hence is orthogonal.
Finally, if A preserves lengths, then |Ap−Aq| = |A(p− q)| = |p− q| for any p,q ∈
Rn, i.e., A preserves distances.
We conclude that A is in fact orthogonal if and only if LA is a rigid motion.

– Next, the composition of two rigid motions is a rigid motion. Hence f(p) = A · p + ~v
is a rigid motion for any orthogonal A ∈ Rn×n and ~v ∈ Rn.

– Conversely, Proposition 1.58: every rigid motion f is of the form f(p) = A · p + ~v for
a unique orthogonal A and vector ~v .

– To prove it, first suppose that f(0) = 0.
Then, since f preserves distances and preserves the origin, it also preserves distances
form the origin, |f(~v )| = |~v |.
Hence, it preserves inner products by the above argument.
It follows that the vectors f(~e 1), . . . , f(~e n) are an orthonormal basis.
Let A be the matrix having these vectors as columns, so that A is an orthogonal matrix
and A · ~e i = f(~e i).
Consider the map g = LA−1 ◦ f = L−1

A ◦ f . Since f and A−1 both preserve inner

products, so does g. Moreover, g(~e i) = L−1
A (f(~e i)) = ~e i for all i. Hence, for any ~v , we

have g(~v )i = 〈g(~v ), ~e i〉 = 〈g(~v ), g(~e i)〉 = 〈~v ,~e i〉 = ~v i for all i and hence g(~v ) = ~v .
In other words g is the identity map, so that f(~v ) = LA, as desired.
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– Finally, if f is an arbitrary rigid motion, and f(p) = ~v , then g(p) = f(p)−~v is a rigid
motion preserving the origin, and g = LA for some A ∈ O(n) and f(p) = g(p) + ~v =
A · p + ~v .

– A rigid motion f = T~v · LA is proper (or orientation-preserving) if the matrix A is
orientation-preserving, i.e., det(A) > 0 (i.e., det(A) = 1 since A ∈ O(n)), and otherwise
improper or orientation-reversing.

Exercises

• Tapp 1.47
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Reference: Tapp, pp. 56-57

Topics:

• Rigid transformations of curves
– Given a curve γ : I → Rn and a rigid motion f : Rn → Rn, we obtain a new curve f ◦γ.
– Proposition 1.64. The curvature of a curve in Rn, the signed curvature of a curve in

R2, and the torsion of a curve in R3 are all invariant under rigid motions. Improper
rigid motions also preserve curvature, but multiply signed curvature and torsion by
−1.

– Invariance means that, for example, if f is a proper rigid motion and γ̂ = f ◦ γ, then
the curvatures κ, κ̂ : I → R of γ and γ̂ are equal.

– (Note this has a slightly different meaning than invariance under reparametrization.

In the latter case, if ϕ : Ĩ → I is a diffeomorphism and γ̃ = γ◦ϕ : Ĩ → Rn has curvature
κ̃ : I → R, then the invariance of curvature means κ̃ = κ ◦ ϕ – the simpler equation
κ̃ = κ doesn’t make sense since κ̃ and κ have different domains.)

– The proof comes down to the fact that if f = T~v ◦ LA, then ~̂v = γ̂′ = (f ◦ γ)′ =

(A · γ+~v )′ = A · γ′ = A~v , and by a similar calculation, we have ~̂u = A~u , whenever ~u

is one of ~t , ~n,~b ,~t
′
, ~n′,~b

′
. Since κ, κs, τ are all defined as inner products between these

quantities, and A preserves inner products.
– Conversely, we have Theorem 1.65 (the “fundamental theorems of plane and space

curves”):
(1) Two unit-speed plane curves differ by a proper rigid motion if and only if they
have the same signed curvature. Moreover, for any prescribed (smooth) functions
κs : I → R, there is a (unique up to proper rigid motions) unit-speed plane curve
γ : I → R2 with signed curvature κs.
(ii) Two space curves with non-vanishing curvature differ by a proper rigid motion if
and only if they have the same curvature and torsion. Moreover, for any prescribed
(smooth) functions κ : I → R>0 and τ : I → R, there is a (unique up to proper rigid
motions) unit-speed space curve γ : I → R3 with curvature κ and torsion τ .

– Part (i) follows from the fundamental theorem of calculus. Given the function κs, fix

t0 ∈ I define θ(t) =
∫ t
t0
κs(t) dt and ~v (t) = (cos θ(t), sin θ(t)) and γ(t) =

∫ t
0
~v (t) dt.

Then γ is a plane curve with velocity γ′ = ~v (hence unit speed) and angle function θ
and hence signed curvature κs = θ′.
For the uniqueness, suppose γ and γ̂ are unit speed with equal signed curvature κs = κ̂s.
Fix t0 ∈ I. By applying a rigid motion, we can assume that γ(t0) = γ̂(t0) and
γ′(t0) = γ̂′(t0).
In particular, by possibly shifting one of them by a multiple of 2π, we can ensure that

their angle functions agree at t0: θ(t0) = θ̂(t0).

But then since θ′ = κs = κ̂s = θ̂′, it follows that θ = θ̂.

But then since γ = (cos θ, sin θ) = (cos θ̂, sin θ̂) = γ̂′ and γ(t0) = γ′(t0), it follows that
γ = γ̂.
(This may seems to be proving too much! We wanted to show that γ, γ̂ at most differ
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by a rigid motion, but we showed that they’re equal ! The point is that at the beginning
of the proof, we applied a rigid motion to γ̂ to ensure that they start at the same point
and in the same direction – so the conclusion is that the original curves differ by a
rigid motion.)

– The proof of part (ii) is similar but more involved, and makes use of the existence and
uniqueness theorem for systems of Ordinary Differential Equations.

– We will only mention that the relevant system of ODEs is the Frenet-Serret equations
mentioned above. The fundamental theorem of ODEs says that there is a unique
solutions to that system with given initial conditions, and this implies the existence of
a unique curve with the prescribed κ and τ up to a proper rigid motion.

Exercises

• Tapp 1.69
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Reference: Tapp, pp. 62-71

Topics:

• Two famous theorems about simple closed curves.
– Theorem 2.1:

(1) Hopf’s Umlaufsatz: the rotation index of any simple closed plane curve is ±1.
(2) The Jordan curve theorem: If γ is a simple closed plane curve with trace C, then
R2 − C has two path components Uin and Uout, where Uin is bounded and Uout is
unbounded.
This means (i) R2 − C = Uin ∪ Uout and Uin ∩ Uout = ∅, (ii) each of these sets U
is path-connected, meaning that any two points p,q ∈ U are connected by a curve
lying entirely in U , and (iii) any curve γ joining a point Uin and a point in Uout must
intersect C.

• Rough sketch of proof of Umlaufsatz.
– The proof relies on the notion of winding number of a continuous function F : [a, b]→

S1 with F (a) = F (b), which is a generalization of the rotation index that we have
already defined.
Namely, just as we defined an angle function θ for a regular curve γ, having the property
that ~t (t) = (cos θ(t), sin θ(t)) for all t, one can more generally prove the existence of an
angle function for any continuous function F : I → S1, again with the property that
F (t) = (cos θ(t), sin θ(t)) for all t.
Then, given F : [a, b] → S1 with F (a) = F (b) with angle function θ, we define its
winding number to be 1

2π (θ(b)− θ(a)).
Hence, we see that the rotation index of a simple closed curve γ is the winding number
of its unit tangent vector ~t .

– Now suppose γ : [a, b] → R2 is a simple closed curve, which we may suppose is unit-
speed. Our goal is to show that the winding number of ~t is ±1.
Let T ⊂ [a, b]× [a, b] be the triangle = T{(t1, t2) | a ≤ t1 ≤ t2 ≤ b}.
We define a continuous function ψ : T → S1 as follows:

ψ(t1, t2) =


γ(t2)−γ(t1)
|γ(t2)−γ(t1)| t1 < t2 and (t1, t2) 6= (a, b)

γ′(t1) t1 = t2

−γ′(ta) (t1, t2) = (a, b).

We observe that the unit-tangent vector function for γ is given by ~t (t) = ψ(t, t).
– Now define α0, α1 : [a, b] → T by setting α0(t) = (t, t) (so that ~t = ψ ◦ α0) and by

letting α1 be a parametrization of the union of the line segments from (a, a) to (a, b)
and from (a, b) to (b, b).

– The claim now follows from the following three facts:
(1) There is a continuous deformation {αs}s∈[0,1] from α0 to α1 – namely αs(t) =

(1− s)α0(t) + sα1(t) – and hence a continuous deformation from ~t = ψ ◦ α0 to ψ ◦ α1

(namely {ψ ◦ αs}s∈[0,1]).
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(2) If two maps F0, F1 : [a, b]→ S1 with F0(a) = F0(b) and F1(a) = F1(b) are continu-
ous deformations of one another, then they have the same winding number.
(3) ψ ◦ α1 has winding number ±1.

• Even rougher sketch of proof of Jordan curve theorem.
– The Jordan curve theorem relies on the notion of a tubular neighbourhood : given a

simple closed curve γ : [a, b] → R2, we can define a function F : [a, b] × R → R2 by
F (t, s) = γ(t) + s ·R90~t (t).

– If we choose ε small enough, then the restriction of F to [a, b) × (−ε, ε) is injective
and its image is an open subset of R2 called a tubular neighbourhood of C = γ([a, b]).
(This follows from the inverse function theorem.)

– We can now see that there are at most two path components of R2 − C as follows.
– Fix two points p1,p2 in the tubular neighbourhood on opposite sides of γ, say p1 =
γ(a, ε/2) and p2 = γ(a,−ε/2), and note that any point in the tubular neighbourhood
can be connected via a path in R2 − C either to p1 or p2.

– Now consider any p ∈ R2 −C and consider a shortest path connecting p to γ. Before
this path intersects γ, it must first intersect the tubular neighbourhood in some point
q. But since q can be connected to either p1 or p2 inside R2 − C, it follows that q
can as well.

– The proof that the two path-components are distinct follows from considering the
functionW : R2−C → Z taking p to the winding number of the function fp : [a, b]→ S1

given by fp(t) = p−γ(t)
|p−γ(t)| .

– The claim then follows from the following facts:
(1) If p1 and p2 are in the same path-component, then W (p1) = W (p2) (since W is
integer-valued, this follows by showing that W is continuous).
(2) If p1,p2 are in the tubular neighbourhood and on opposite sides of C as above,
then |W (p1)−W (p2)| = 1.

– The claim that one of the components is bounded and the other isn’t follows from the
fact that if p is sufficiently far from γ, then W (p) = 0.

• Umlaufsatz for piecewise-smooth curves
– The Jordan curve theorem in fact holds for arbitrary continuous simple closed curves γ

(i.e., continuous maps γ : [a, b]→ R2 that are injective on [a, b) and with γ(a) = γ(b)),
though the above proof doesn’t work.

– The Umlaufsatz doesn’t make sense for continuous curves γ in general, since it refers
to the tangent vector of γ.

– However, there is a generalization of it for piecewise-smooth simple closed curves, i.e.,
continuous closed curves γ : [a, b] → R2 such that there are finitely many points a =
t0 < t1 < . . . < tk = b such the restriction of γ to each [ti, ti+1] is smooth. The points
γ(ti) are called the corners of γ.

– To state the theorem, define the signed turning angle αi at each corner γ(ti), by

consider the incoming and outgoing unit tangent vectors ~t
−
i = ~t

−
(ti) = limt↗ti ~t (t)

and ~t
+

i = ~t
+

(ti) = limt↘ti ~t (t), and defining αi ∈ [−π, π] so that |αi| = ∠(~t
−
i ,~t

+

i )

and so that the sign of αi is the sign of 〈R90~t
−
i ,~t

+

i 〉 (i.e., it’s positive if you need to

turn counter-clockwise to get from ~t
−
i to ~t

+

i ).
– Finally, say that γ is positively oriented if R90γ

′(t) points toward the bounded com-
ponent of R2 − γ([a, b]) whenever t 6= ti (and otherwise negatively oriented). We note
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that a positively oriented smooth simple closed curve has rotation degree 1 (rather
than −1).

– The theorem is then: Theorem 2.7: if γ is positively oriented, then∫ b

a

κs(t) +

n∑
i=1

αi = 2π.

(Note that this integral is well-defined, since κs(t) is well-defined and continuous out-
side of the ti.)

– Note that the “opposite” case from the case of a smooth γ is that in which γ is a
polygon, i.e., each smooth segment is simply a line segment. Then the theorem just
says that the sum of the signed turning angles of a polygon are equal to 2π.

– The idea of the proof is to reduce to the case of a smooth curve by “rounding the
corners”: we choose ε > 0 very small and replace γ by a smooth curve γ̂ which is equal
to γ outside of each (ti − ε, ti + ε), and on these intervals, it is given by a small arc.

– Then the total signed curvature
∫ b
a
κ̂s of γ̂ is 2π since γ̂ is smooth. On the other hand,

this differs from
∫ b
a
κ̂s by the sum of the

∫ ti+ε
ti−ε κ̂s, which is θ̂(ti + ε)− θ̂(ti − ε), which

converges to αi as ε→ 0.
– Finally, we mention a reformulation in terms of the interior angles βi = π−αi (in the

negatively oriented case, they would be π + αi).
– Then the theorem becomes∫ b

a

κs =
( n∑
i=1

βi

)
− (n− 2)π

and in the particular case of a polygon, becomes the well-known formula
n∑
i=1

βi = (n− 2)π.

Exercises

• Tapp 1.81
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Reference: Tapp, pp. 125-135, 167-169

Topics:

• Isometries between surfaces
– We now begin our discussion of surfaces, i.e., 2-manifolds, in R3. Some of this gener-

alizes to arbitrary manifolds, so we might as well discuss it in this generality, but you
should keep in mind the case of surfaces throughout the discussion. (Note that Tapp
uses the term regular surface for a 2-manifold in R3.)

– Recall that each tangent space TpS of a manifold M ⊂ Rn has an inner product
〈−,−〉 : TpM × TpM → R, namely just the restriction of the standard inner product
on Rn. Sometimes we may denote it by 〈−,−〉p to emphasize that it is an inner
product on the space TpM .
Hence, we also have the norm map |−|p = |−| : TpM → R.
As always, each of these determines the other via 〈~u , ~w 〉p = 1

2 (|~u + vw|2p−|~u |2p−|~w |2p).
– A diffeomorphism f : M1 → M2 between manifolds is an isometry if its derivative

dfp : TpM1 → Tf(p)M2 at each point (remember, we are no longer using Spivak’s
notation f∗!) preserves the norm (or equivalently, the inner product): ‖dfp~u ‖f(p) =
‖~u ‖p for all ~u ∈ TpM1.

– Two manifolds are isometric if there is an isometry between them.
– The most obvious examples are: if f is a rigid motion of Rn, then the restriction to

any manifold f : M → f(M) is an isometry.
– In this example if M = f(M), then f induces an isometry from M to itself; this is

called an isometry of M . An example is a rotation of a sphere.
– The more interesting examples of isometries do not come from rigid motions. An

example is the map f : (−π, π)× R→ C ⊂ R3 given by f(u, v) = (cosu, sinu, v) from
an infinite strip to a slit cylinder C = f(V ) = {(x, y, z) | x2 + y2 = 1 and x 6= −1}. We

have df(u,v)(~e 1) = ∂f
∂u (u, v) = (− sinu, cosu, 0) and df(u,v)(~e 2) = ∂f

∂v (u, v) = (0, 0, 1),
hence df(u,v) takes an orthonormal basis to an orthonormal basis, and hence preserves
the inner product.

– (Aside: this is a general fact: if T : V → W is a linear map between inner product
spaces and ~u 1, . . . , ~u n is an orthonormal basis of V and {f(~u 1), . . . f(~u n)} ⊂ W is
also an orthonormal set, then f preserves the inner product, since if ~w =

∑
i ai~u i,

then |vw|2 =
∑
i a

2
i , and |f(~w )|2 = |

∑
i aif(~u i)|2 =

∑
i a

2
i .)

– A slightly more natural example is the “wrapping” map f : R2 → D given by the same
formula, where now D is the (non-slit) cylinder. This map still preserves the inner
product, but is now only a local diffeomorphism (i.e., it restrict to a diffeomorphism is
a neighbourhood of each point). Such a map is called a local isometry.

– As you will show in an exercise, a diffeomorphism f : M1 → M2 is an isometry if
and only if it preserves the lengths of curves, i.e., if for all γ : [a, b] → M1, we have
length(γ) = length(f ◦ γ).

– Similarly, for two regular (say, unit-speed) curves γ1, γ2 meeting at a point p = γ1(t0) =
γ2(t1), their angle at that point cos−1(〈γ′1(t0), γ′2(t1)〉) is also preserved by f .
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– We call a property of a manifold “intrinsic” if it is preserved by arbitrary isometries.
Intuitively, this is a property that only depends on measurements of lengths and angles
on the surface, and on how the surface is embedded in R3.

• Surface patches and parametrized surfaces
– Given a surface S, a surface patch is another word for a parametrization σ : U → V ⊂
S, i.e., a diffeomorphism where U ⊂ R2 is open and V ⊂ S is an open subset of S (i.e.,
an intersection V ′ ∩ S for some open subset V ′ ⊂ R3).

– We typically denote surface patches by σ, and if u, v : U → R are the coordinates on
U , we write σu : U → R3 and σv : U → R3 for the partial derivative of σ. Note that
σu(q) = dσq(~e 1) ∈ Tσ(q)S and similarly σv(q) ∈ Tσ(q) for all q ∈ U .

– The curves σ(u, v0) for fixed v0 and σ(u0, v) for fixed u0 on S are called parameter
curves. The vectors σu and σv are precisely the tangent vectors to the parameter
curve.

– Recall that (by the inverse function theorem) given any smooth map σ : U → R3

with U ⊂ R2 open and q ∈ U , if dσq is injective (i.e., rank 2), then q has some
neighbourhood V such that σ(V ) is a surface and σ|V : V → σ(V ) is parametrization.

– Tapp calls such a map σ a parametrized surface.
– Note that the condition for σ to be a parametrized surface is precisely that σu and σv

are independent, or equivalently that σu × σv 6= 0.

Exercises

• Tapp 3.18

• Tapp 3.83
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Reference: Tapp, pp. 131, 165-166, 182-185

Topics:

• Surface patches for S2

– As an example, a surface patch for the 2-sphere S2 is given by σ : (0, 2π)× (0, π)→ S2

defined by

σ(θ, ϕ) = (sinϕ cos θ, sinϕ sin θ, cosϕ).

– We have σθ = (− sinϕ sin θ, sinϕ cos θ, 0) and σϕ = (cos θ cos θ, cosϕ sin θ,− sinϕ).
Thus |σθ × σϕ| = sinϕ 6= 0 so dσq is indeed injective for all q, so σ is a parametrized
surface.

– σ is clearly injective, hence bijective onto its image, which is C = S2−{(x, 0, z) | x ≥ 0}.
To see that is a surface patch (i.e., a diffeomorphism onto its image), one needs to check
that its inverse is smooth; this amounts to solving for (ϕ, θ) in terms of (x, y, z) ∈ C.
We have ϕ = arccos z and (x, y) = F (x/ sinϕ, y/ sinϕ) where F : S1−{(0, 1)} is inverse
of the diffeomorphism (cos t, sin t) : (0, 2π)→ S1.

– The parameter curves σ(θ, ϕ0) and σ(θ0, ϕ) are the parallels and meridians, respec-
tively.

– To obtain an atlas for S2, we need to use a second surface patch which instead excludes
a different half circle, obtained for example by composing the above surface patch with
a suitable rotation in R3

• Surfaces of revolution
– Here is a nice source of examples of surfaces: begin with a curve γ(t) = (x(t), 0, z(t)),
t ∈ (a, b) in the xz-plane, and assume x > 0 and z′ > 0.

– Let C be the trace of γ and let S the result of revolving C around the z-axis, i.e., the
image of σ(θ, t) = Rθ(γ(t)) = (x(t) cos θ, x(t) sin θ, z(t)), θ ∈ R, t ∈ (a, b). Here Rθ is
the rotation by angle θ around the z-axis, which is represented by the matrixcos θ − sin θ 0

sin θ cos θ 0
0 0 1

 .
– Note that by assumption, the function z = γ3 is a diffeomorphism, so we have a

smooth inverse γ−1
3 : (γ3(a), γ3(b))→ (a, b). We see that S is exactly the regular level

set G−1(0) for the smooth function G(x, y, z) = x2 + y2 − γ1(γ−1
3 (z))2. This shows

that S is indeed a surface.
– We have that σ is a parametrized surface since σθ = (−x sin θ, x cos θ, 0) and σt =

(x′ cos θ, x′ sin θ, z′), which are clearly independent since x, z′ > 0. Hence the restric-
tion of σ to any sufficiently small open set (in fact, any set of the form (θ0, θ0 + 2π)×
(a, b)) is a surface patch.

• Area is intrinsic
– We have seen that lengths of curves and angles are intrinsic. Areas are also intrinsic,

i.e., given an isometry f : S1 → S2, say, with S1 compact, and a bounded open set
U ⊂ S1, we have Area(U) = Area(f(U)).
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– To see this, recall that we have defined the area of U to be
∫
U

dV , where dV is the
volume form, which for a surface is given by dV (~u ,~v ) = 〈~n(x), vu× ~v 〉, where ~n(x) is
the unit normal vector to the surface.

– (This depends on the chosen orientation but – as Spivak shows in Exercises 5-21 and 5-
27, but which we didn’t discuss (though it was raised in class as a question) – the
absolute value |dV |(~u ,~v ) = |~u × ~v | doesn’t depend on the orientation, and it turns
out one cans still define an integral of such an “absolute k-form” on a k-manifold, so
that the volume still makes sense, independent of orientation or orientability.)

– In particular, for a surface patch σ : W ∼−→ U , we have Area(U) =
∫
W
|σu × σv|dudv.

– To see that this is preserved by isometries, we may simply note that, if f : S1 → S2

is an isometry, then f∗|dVS2 | = |dVS1 | (where these are the respective volume forms
of S1 and S2). This is because the volume form was defined to be the unique 2-form
taking the value 1 on a(n oriented) orthonormal basis. But since f is an isometry,
dfp : TpS1 → Tf(p)S2 is an isomorphism of inner product spaces for each p ∈ S1, and
hence takes an orthonormal basis to an orthonormal basis.

– Somewhat more concretely, if σ : W ∼−→ U is a surface patch, then |σu × σv| = |σu| ·
|σv| · sin∠(σu, σv) is preserved by f , since f preserves lengths of and angles between
tangent vectors.

• The first fundamental form of a surface
– The first fundamental form of a surface S ⊂ R3 is the function assigning to each p ∈ S,

the squared-norm function |−|2p.
(Sometimes, it instead refers to the function assigning to each p the inner product
〈−,−〉p).

– It is something like a 1-form, since it is assigns a function Tp → R to each tangent
space, except that now these are quadratic and not linear functions.

– (Similarly, p 7→ 〈−,−〉p is something like a 2-form, except that 〈−,−〉p is symmetric
rather than alternating.)

– It is interesting to see what the first fundamental form looks like in local coordinates.
– Thus, given a parametrization σ : U → V ⊂ S, we may pull the first fundamental

form back along σ, i.e., consider the function F1 assigning to each p ∈ U the function
TpU = R2 → R given by ~v 7→ |dσq(~v )|2σ(q).

– Let us define functions E = |σu|2, F = 〈σu, σv〉, G = |σv|2.
– We then have, for any q ∈ U and ~v = (v1, v2) = (du(~v ),dv(~v )) ∈ R2, that dσp(~v ) =
v1σu(p) + v2σv(p) and hence

F1(p)(~v ) = ‖v1σu(p) + v2σv(p)‖2

= v2
1‖σu(p)‖2 + 2v1v2〈σu(p), σv(p)〉+ v2

2‖σv(p)‖2

= (E(p) du2 + 2F (p) dudv +G(p) dv2)(~v ).

– We thus write

F1 = E du2 + 2F dudv +Gdv2.

– Put another way, the function E,F,G are such that at each p ∈ U , the bilinear form
~u ,~v 7→ 〈dσp(~u ),dσp(~v )〉 is given by

~u> ·
[
E(p) F (p)
F (p) G(p)

]
· ~v .
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– We can compute lengths and areas in local coordinates using the first fundamental
form.

– If γ : [0, l]→ U is a regular curve, then writing γ(t) = (u(t), v(t)), we have

length(σ ◦ γ) =

∫ l

0

√
F1 =

∫ l

0

√
E du2 + 2F dudv +Gdv2

=

∫ l

0

√
E
(du

dt

)2

+ 2F
du

dt

dv

dt
+G

(dv

dt

)2

dt

– Similarly, the area of σ(R) ⊂ S for a region R ⊂ U contained in compact subset of U
is given by∫

R

|σu × σv| =
∫
R

√
|σu|2|σv|2 − 〈σu, σv〉2 =

∫
R

√
EG− F 2.

– Example, for the spherical coordinate chart σ : (0, 2π)× (0, π)→ S2 given by σ(θ, ϕ) =
(sinϕ cos θ, sinϕ sin θ, cos θ), we had

σθ = (− sinϕ sin θ, sinϕ cos θ, 0) and σϕ = (cos θ cos θ, cosϕ sin θ,− sinϕ)

– We thus have

E = |σθ|2 = sin2 ϕ F = 〈σθ, σϕ〉 = 0 G = |σϕ|2 = 1.

– Hence the first fundamental form is

E dθ2 + 2F dθ dϕ+Gdϕ2 = sin2 ϕdθ2 + drϕ2.

Exercise

• Compute the first fundamental form of the surface patch σ(θ, t) = (x(t) cos θ, x(t) sin θ, z(t))
of the surface of revolution of γ(t) = (x(t), 0, z(t)).
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Topics:

• Curvature on surfaces
– To study curvature on surfaces, we will have to familiarize ourselves with four related

objects, and understand the relationship between them: the Gauss map, the Wein-
garten map, and the second fundamental form.

– These will give rise to three notion of curvature: the normal curvature (of a curve on
a surface), and the mean curvature and Gaussian curvature (of the surface itself). Of
these, the Gaussian curvature is the most important.

– To discuss curvature on surface S, we will first want to assume S is oriented. It will
then turn out that the most important notion (the Gaussian curvature) is independent
of the orientation). Also, note that locally (i.e., in some small neighbourhood around
any point), any surface can be oriented.

– Recall that an orientation for S amounts to specify a normal vector field ~N : S → R3

to S, i.e., a smooth function with ~N (p) ∈ Tp(S)⊥ and | ~N (p)| = 1 for all p ∈ S.
– Given a unit-speed curve γ on an oriented surface S, its normal curvature is the

quantity κn = 〈γ′′(t), ~N (γ(t))〉. Hence, it is positive if the γ is bending away from the
normal vector, and negative otherwise.

– Since γ′ ⊥ ~N , we have

κn(t) = 〈γ′′(t), ( ~N ◦ γ)(t)〉 = −〈γ′(t), ( ~N ◦ γ)′(t)〉 = 〈γ′(t),−d ~N γ(t)(γ(t))〉.
– Thus, we see that the normal curvature of γ at p = γ(t) actually only depends on
~v = γ′(t) – if we had a second curve α with α(t) = p and α′(t) = ~v , it would have the

same Gaussian curvature at p, namely 〈~v ,−d ~N p〉.
– Thus, for p ∈ S and ~v ∈ TpS, we define the normal curvature at S in the direction

(of a normal vector) ~v to be the quantity IIp(~v ) ..= 〈− d ~N p, ~v 〉. (We will explain the
notation once we introduce the second fundamental form.) Note that this is the rate
at which the normal vector is bending as we move in the direction ~v from p.

– At each point p, we can consider the minimal and maximal normal curvature at p.
These are called the principal curvatures:

k1 = min
~v∈TpS
|~v |=1

IIp(~v ) k2 = max
~v∈TpS
|~v |=1

IIp(~v ).

Note that these may be both positive, both negative, or have opposite signs.
– The Gaussian curvature at p is the product of the principal curvatures: K(p) = k1k2.
– The mean curvature at p is the average of the principal curvatures: H(p) = 1

2 (k1 +k2).
– If we switch the orientation of S, then we change the sign of the normal curvature of all

curves, hence of the principal curvatures, and hence of the mean curvature. However,
the Gaussian curvature remains the same, hence is independent of orientations.

– Example: the Gaussian curvature on a sphere of radius R is constantly 1/R2 since all
normal curvatures, hence both principal curvatures, at any point are equal to 1/R.
It also constant mean curvature ±1/R (depending on the orientation).

75



Math 435 lecture 39 April 19, 2024

– In general, a point on a surface with k1 = k2 is called an umbilical point.
– The point (a, 0, 0) on an ellipsoid x2/a2 + y2/b2 + z2/c2 = 1 is not umbilical, but it

clearly still has positive Gaussian curvature K > 0.
– The point (0, 0, 0) on the hyperbolic paraboloid z = x2 − y2 has negative Gaussian

curvature K < 0. By symmetry considerations, one can see that the mean curvature
at this point must be 0.

– A plane obviously has constant zero Gaussian curvature (and mean curvature).
– A cylinder also has constant zero Gaussian curvature, since each point has a curve

with normal curvature 0 and (exercise:) all the normal curvature of all other curves
have the same sign.
We also see that the mean curvature of a cylinder is not zero.

– Hence, the mean curvature cannot be intrinsic, since we know that the plane and the
cylinder are (locally) isometric.

– However, the Gaussian curvature still has a change of being intrinsic – and in fact, it
is!
This is Gauss’ Theorema Egregium (amazing theorem), so called because he was so
surprised and delighted by it – intuitively, one would not expect any notion of curvature
to be intrinsic.

Exercise:

• Show that all normal curvatures on a cylinder at a given point have the same sign.
• Find a surface which has points of positive, zero, and negative Gaussian curvature.
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Reference: Tapp, pp. Chapter 4

Topics:

• The Gauss and Weingarten maps, and the second fundamental form
– We will now explain some important reformulations of the principal and Gaussian

curvatures.
– First, the Gauss map of an oriented surface S is another name for the unit normal

vector map ~N : S → R3, except that we regard it as a smooth map of surfaces ~N : S →
S2.

– Hence, for each p ∈ S, we can consider its derivative d ~N p : TpS → T ~N (p)S
2. But

notice that the planes TpS and T ~N (p)S
2 are equal (recall that they are both considered

as linear subspaces of R3, i.e., planes through the origin), since they both have normal

vector ~N (p).

– Hence we can consider d ~N p as a map TpS → TpS.
– The Weingarten map (also called the shape operator) of S at p is the linear map

Wp = − d ~N p : TpS → TpS.
– Note that by definition, the normal curvature at p ∈ S in the direction ~v ∈ TpS (with
~v a unit vector) is given by

(3) IIp(~v ) = 〈Wp~v ,~v 〉.

– More generally, we define the second fundamental form of S at p to be the function
IIp(~v ) : TpS → R given by (3) (i.e., we extend it to all tangent vectors, not only unit
length ones). Like the first fundamental form, it assigns a quadratic function to each
tangent space (in the sense that IIp(a~v ) = a2IIp(~v )).

– The fundamental property ofWp is that it is self-adjoint. A linear operator T : V → V
on an inner product space V is self-adjoint if 〈T~u ,~v 〉 = 〈~u , T~v 〉 for all ~u ,~v ∈ V .

– On Rn with the standard inner product 〈~u ,~v 〉 = ~u> · ~v , this just means that the
matrix representing T is symmetric: T> = T .

– To see that Wp is self-adjoint, note that it suffices by the bilinearity of 〈Wp−,−〉 to

check 〈Wp~u ,~v 〉 = 〈~u ,Wp~v 〉 with ~u ,~v both vectors from any fixed basis ~b 1,~b 2 of TpS

(and moreover, it suffices to consider the case ~u = ~b 1 and ~v = ~b 2 since the equation
obviously holds when ~u = ~v ).
Choosing a parametrization σ : U → V ⊂ S with σ(q) = p, we will prove it for the
basis {σu(q), σv(q)}.
Now we evaluate

0 =
∂

∂u
〈 ~N ◦ σ, σv〉 = 〈d ~N (σu), σv〉+ 〈N ◦ σ, σuv〉.

where the first equation is because ~N is perpendicular to S whereas σv is tangent to
it.
Switching the roles of u and v, we obtain 0 = 〈d ~N (σv), σu〉+ 〈N ◦ σ, σuv〉, and hence

we conclude 〈d ~N (σu), σv〉 = 〈d ~N (σv), σu〉 as desired.
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– Why is it good to know thatW is self-adjoint? One reason is the fundamental property:
for any self-adjoint operator T , there is a basis consisting of eigenvectors for T .

– To prove this, it suffices to prove it in the case V = Rn since every n-dimensional inner
product space is isomorphic to Rn.

– We prove it in the case of interest dimV = 2. Recall that the eigenvalues of a matrix
A are the roots of its characteristic polynomial p(λ) = det(λI −A).

– Here, A =

[
a b
b d

]
, and hence p(λ) = λ2 − (a+ d)λ+ (ad− b2). This has discriminant

(a+ d)2 − 4(ad− b2) = (a− d)2 + b2, which is non-negative, hence both roots are real.
– Now, if both roots are equal (i.e., a = d and b = 0), then A is just a diagonal

matrix

[
λ 0
0 λ

]
, hence every vector is an eigenvector, and we can obviously choose an

orthonormal basis.
– Otherwise, there are two distinct eigenvalues λ, µ, and we use the following general

fact: if ~u and ~v are eigenvectors for T with distinct eigenvalues λ and µ, then ~u ⊥ ~v .
Indeed,

λ〈~u ,~v 〉 = 〈T~u ,~v 〉 = 〈~u , T~v 〉 = µ〈~u ,~v 〉

and hence 〈~u ,~v 〉 = 0 if λ 6= µ.
– Next, the quadratic form associated to a self-adjoint operator T is the function Q(~v ) =
〈T~v ,~v 〉. It determines T since 〈T~u ,~v 〉 = 1

2

(
Q(~u + ~v )−Q(~u )−Q(~v )

)
(and T is

determined by the function ~u ,~v 7→ 〈T~u ,~v 〉 since if ~b 1, . . . ,~b n is an orthonormal basis,

then T~u =
∑
i〈T~u ,~b i〉~b i).

– Thus, the quadratic form associated to Wp is IIp.

– Now, in general, if ~b 1, . . . ,~b n is an orthonormal basis of eigenvectors for T with eigen-

values λ1, . . . , λn, we have for ~v =
∑n
i=1 vi

~b i that

Q(~v ) = 〈
n∑
i=1

vi~b i, T

n∑
i=1

vi~b i〉 =

n∑
i=1

λiv
2
i .

– Letting λmin and λmax be the minimal and maximal eigenvalues, it follows that λmin

and λmax are the minimal and maximal values attained by Q(~v ) on unit vectors ~v .
(Indeed,

∑
i λiv

2
i ≤

∑
i λmaxv

2
i = λmax, and similarly Q(~v ) ≥ λmin.)

– We conclude that the principal curvatures of S at p are the eigenvalues of Wp.
– Moreover, the principal directions ~v 1, ~v 2, i.e., the unit vectors for which IIp(~v i) = λi

are orthogonal.
– Some care must be taken about this at umbilical points (i.e., when λ1 = λ2). In this

case, every direction is a principal direction (i.e., every vector is an eigenvector, and
Wp is just the operatorWp(~v ) = λ~v ) – but we can of course still choose two principal
directions which are orthogonal.

– Finally, recall that for a linear operator T : V → V on a finite-dimensional vector space
V , its trace tr(T ) and determinant det(T ) are defined to be the trace and determinant

of the matrix A representing T with respect to any basis ~b 1, . . . ,~b n of V .

– If we choose a different basis ~b
′
1, . . . ,

~b
′
n and define the change of basis matrix P by

~b
′
i =

∑
j Pij

~b j , the matrix of T with respect to the second basis is A′ = PAP−1.

By the multiplicativity of det and the property tr(XY ) = tr(Y X) of the trace, it
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follows that det(A) = det(A′) and tr(A) = tr(A′) and hence that det(T ) and tr(T ) are
well-defined.

– Now, if ~v 1, . . . , ~v n is a basis of eigenvectors with eigenvalues λ1, . . . , λn, then the matrix
of T is the diagonal matrix with entries λ1, . . . , λn and hence det(T ) = λ1 · · ·λn and
tr(T ) = λ1 + · · ·+ λn.

– We conclude that the Gaussian and mean curvature are the determinant and half the
trace of the Weingarten map K(p) = det(Wp) and H(p) = 1

2 tr(Wp).
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Topics:

• Second fundamental form in local coordinates
– As with the first fundamental form, we can also represent the second fundamental form

in local coordinates.
– That is, given a surface patch σ : U ∼−→ V ⊂ S, we can consider the function (F2)q : R2 =

TqU → R given by (F2)q(~v ) = IIp(dσq(~v )).
– As before, we can write this in the form

F2 = edu2 + 2f dudv + g dv2

where now e = II(σu) = 〈σuu, ~N 〉, f = W(σu, σv) = 〈σuv, ~N 〉, and g = II(σv) =

〈σvv, ~N 〉.
– We then obtain such formulas as

K =
eg − f2

EG− F 2
H =

eG− 2fF + gE

EG− F 2
{k1, k2} = {H −

√
H2 −K,H +

√
H2 −K}.

• Total Gaussian curvature
– Given a plane curve γ : [a, b]→ R, its total signed curvature

∫ b
a
κs dt can be interpreted

as the signed length of the curve ~t : [a, b] → S1, where by “signed” length we mean∫
[a,b]

~t
∗

dV , where dV is the volume form on the circle (with its standard orientation).

– Indeed, the oriented unit tangent vector at ~v ∈ S1 is precisely R90~v , and hence

~t
∗

dV (~e 1) = dV (~t
′
) = 〈~t ′, R90~t 〉 = κs = κs dt(~e 1).

– The total signed curvature
∫
S
K dVS of a surface can be given a similar interpretation,

namely as the signed area
∫
S
~N
∗

dVS2 of the Gauss map ~N : S → S2.
– (In fact, this was Gauss’ original definition of K: as the “infinitesimal signed area of

the Gauss map”.)

– In other words, the claim is that ~N
∗

dVS2 = K dVS . To prove this, let ~u ,~v ∈ TpS
be an orthonormal basis of tangent vector at some point so that dVS(~u ,~v ) = 1 by

definition of dV and ~u × ~v = ~N (p) by definition of ~N .

– Let us write −d ~N p(~u ) = a~u + b~v and − d ~N p(~v ) = c~u + d~v . Then, by definition,

K(p) = det(Wp) = det(−d ~N p) = det

[
a b
c d

]
= ad− bc.
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– On the other hand,

( ~N
∗

dVS2)(~u ,~v ) = dVS2(d ~N p(~u ),d ~N p(~v ))

= 〈d ~N p(~u )× d ~N p(~v ), ~N (p)〉

= 〈(a~u + b~v )× (c~u + d~v ), ~N (p)〉

= 〈(ad− bc) ~N (p), ~N (p)〉
= ad− bc
= K(p) dVS(~u ,~v )

as desired.
• Normal sections

– Recall that we defined the normal curvature IIp(~v ) of an oriented surface S at a point

p in the direction ~v to be the normal curvature 〈 ~N (p), γ′′(t0)〉 of any unit-speed curve
γ on S with γ′(t0) = ~v .

– However, one can also define them in terms of certain canonically defined curves called
normal sections.

– We consider the plane P through p parallel to ~N (p) and ~v , i.e., with normal vector

~n = ~N (p)× ~v .
– We now intersect P with S, and we claim that there is some small open set U ⊂ R3

containing p such that the intersection S ∩ P ∩ U is a smooth curve, i.e., a smooth
1-manifold.

– Indeed, P is the zero-set of the function F (~x ) = 〈~x − p, ~n〉 with derivative dF (p) =
~n> (i.e., with gradient ∇F (p) = ~n). And since S it is a 2-manifold, there is some
neighbourhood W of p and smooth function G : W → R with regular value 0 such

that W ∩ S = G−1(0); moreover, we have that ∇G(p) ‖ ~N (p), i.e., dG(p) = ~u⊥ for

some ~u ‖ ~N (p).
– It follows that the function H : U → R2 given by H(~x ) = (F (~x ), G(~x )) satisfies
H−1(0) = S ∩ P ∩W , and dH(p) has linearly independent (in fact, orthogonal) rows

~n> and ~u>, and hence has p as a regular point.
– It then follows that 0 is a regular value of the restriction of H to some small neigh-

bourhood U ⊂W of p, and hence by the inverse function theorem, C = H−1(0)∩U =
P ∩ S ∩ U is a 1-manifold as claimed.

– We can thus find a parametrization C near p by a unit-speed curve γ : (ε, ε) → R3

with γ(0) = p.
– The smooth curve γ is called the normal section of S at p.
– By definition, it lies entirely inside the plane P , and hence γ′′ lies inside P as well.

Since γ′′(0) ⊥ γ′(0), it follows that γ′′ ‖ ~N (p), and hence that

κ(0) = |γ′′(0)| = 〈γ′′(0), ~N (p)〉 = |IIp(~v )|.

– We conclude that the absolute value of the normal curvature IIp(~v ) is the curvature
at p of the normal section in the direction ~v .

• Geodesics
– Let γ be a unit-speed curve on an oriented surface S with unit normal vector field ~N .

– We can decompose ~a = γ′′ as ~a = ~a ‖ + ~a⊥ with respect to ~N .
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– We have already identified the second term in terms of the normal curvature ~a⊥ =

κn
~N .

– Since γ is unit-speed, ~a is orthogonal to both ~v and ~N , and hence is parallel to

R90~v ..= ~N × ~v , the “90 degree counter-clockwise rotation of γ′ with respect to the
chosen orientation”.

– We now set κg = 〈γ′′, R90~v 〉, so that we have ~a ‖ = κgR90(~v ) and hence

~a = κn · ~N + κg ·R90(~v ).

– The quantity κg is called the geodesic curvature of γ, and measure the bending of γ
relative to the surface.

– If S is a plane, then κg is just the signed curvature.

– We see that κg = 0 if and only if γ′′ ‖ ~N ; note that whether this holds is independent
of orientation.

– Thus, in general, we define a geodesic on S to be a regular curve γ such that γ′′(t) is
orthogonal to S for all t.

– Hence, if γ is unit-speed, it is a geodesic if and only if κg = 0.
– In general, we have: every geodesic γ has constant speed. This follows immediately

from the fact that γ′ ⊥ γ′′.
– On a plane, the geodesics are precisely the lines with constant-speed parametrization.
– We now state two fundamental facts about geodesics without proof.
– Proposition 5.3: for each p ∈ S and each ~v ∈ TpS, there exists a geodesic γ~v : (a, b)→
S (where 0 ∈ (a, b)) with γ~v (0) = p and γ′~v (0) = ~v .

Moreover, it is unique in the sense that for any other geodesic γ̂~v : (â, b̂) → S with

these properties, γ~v and γ̂~v agree on their common domain (a, b) ∩ (â, b̂).
– Note that, while we can sometimes choose the domain (a, b) to be all of R (for example,

when S is a plane), this isn’t always the case.
For example, if S is the puncture xy-plane S = {(x, y, z) ∈ R3 | z = 0 and (x, y) 6= (0, 0)},
and we take p = (−1, 0, 0) and ~v = (1, 0, 0), then the maximal domain of γ~v is (−∞, 1).

– This proposition is important because it allows us identify all the geodesics on a given
surface.

– For example, every geodesic on S2 is (a part of) a great circle γ(t) = cos(at)~u +
sin(at)~v , where ~u ,~v ∈ S2 are orthogonal.
Indeed, the great circles are clearly geodesic (since γ′(t) = −a sin(at)~u + a cos(at)~v ⊥
γ(t) = ~N (γ(t))), hence for any p ∈ S2 and ~v ∈ TpS, the unique geodesic γ~v through
p with γ′~v (0) = ~v must be the great circle γ~v (t) = cos(at)p + sin(at)~v .

– By a similar argument, we can see that every geodesic on the cylinder C = {(x, y, z) ∈ R3 | x2 + y2 = 1}
is a helix γ(t) = (cos t, sin t, ct).

– Next, Corollary 5.23: a curve γ is a geodesic if and only if it is locally length-minimizing.
This means that for any t0 in the domain of γ, there is some ε > 0 such that for any
t1, t2 ∈ (t0 − ε, t0 + ε), if we set p = γ(t1) and q = γ(t2), then γ|[t1,t2] is the shortest

path on S from p to q, i.e., any other curve α : [a, b]→ S from p to q on S has greater
arc-length than γ|[t1,t2]:∫ b

a

|α′(t)|dt ≥
∫ t2

t1

|γ(t)|dt = |γ′|(t2 − t1)

where for the last equation, we are using that γ has constant speed.
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– In particular this tells us immediately that (Corollary 5.24): geodesics are intrinsic.
– This gives us a second proof that the helices are the geodesics on the cylinder, since

we know what the geodesics in the plane are.
• Gauss-Bonnet

– We finish our exploration of surfaces (though there is much more we are not covering
– just look at some of the other sections in Tapp’s book!) with the spectacular Gauss-
Bonnet theorem (which we will discuss, but not prove).
The theorem is analogue of Hopf’s Umlaufsatz, saying that the total signed curvature∫ b
a
κs of a simple closed curve is ±2π.

The Gauss-Bonnet theorem gives a formula for the total Gaussian curvature
∫
S
K dV

of a compact surface S.
These are both global theorems, in that they something about the given curve or
surface as a whole, rather than describing the behaviour in a small or infinitesimal
neighbourhood of each point (for example, giving formulas relating speed, curvature,
and so on).

– To state the formula, we first need to introduce some auxiliary notions.
– A polygonal region on a surface S (possibly with boundary) is the a subset R ⊂ S

which is the image under some surface patch σ : U ∼−→ V ⊂ S of a piecewise smooth
curve in U together with its interior.

– A triangle on S is a polygonal region with three vertices. The three smooth segments
of the boundary are called its edges.

– A triangulation of S is a set T of triangles whose union is S, and such that for any
two T1, T2 ∈ T , the intersection T1 ∩ T2 is either an edge of both T1, T2 or a vertex of
both T2, T1.

– It is a (non-trivial) fact that every surface with boundary admits a finite triangulation.
– If T is a finite triangulation, its Euler characteristic of T is the alternating sum
χ = V −E+F , where V,E, F are the number of vertices, edges, and triangles appearing
in the triangulation.

– We also call this the Euler characteristic of S because – as we will see right now – it
is independent of the triangulation (though this is far from obvious).

– Namely, the Gauss-Bonnet theorem says that for a compact surface S (without bound-
ary!), we have: ∫

S

K = 2πχ(S).

– Since the left side is independent of the triangulation, this shows that the right side is
too.

– On the other hand, the right side is clearly invariant under diffeomorphism (since
you can just take the image of any triangulation under the diffeomorphism), hence
this shows the remarkable fact that the total Gaussian curvature is invariant under
diffeomorphism (and not just isometry)!
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• Examples of Gauss-Bonnet
– For the unit sphere S2, we have constant curvature K = 1, and area 4π, hence we find

that χ(S2) = 2.
– We can also compute it directly: for example, if we triangulate S2 as a tetrahedron,

we obtain χ = 4− 6 + 4 = 2, or if as an octahedron, we obtain χ = 8− 12 + 6 = 2.
– A useful fact is that you can actually compute the Euler characteristic using any

partition into polygons, not just triangles. The reason is that you can always subdivide
a polygon into triangles, and it won’t change the Euler characteristic, since each time
we connect two corners, we are adding both a face and an edge.

– Hence, we can also compute χ(S2) with a cube 6− 12 + 8 = 2.
– Next, for the torus, it is harder to compute the total Gaussian curvature directly. But

we can triangulate (or “polygonate”) it using a single face, two edges, and one vertex,
hence ξ = 1− 2 + 1 = 0. Thus the total Gaussian curvature of a torus is 0.

– There is a second way to see this, which is by attaching a handle to the sphere.
– That is, we consider the cylinder {(x, y, z) | x2 + y2 = 1 and z ∈ [0, 1]}. It has a polyg-

onation with 1 face, 3 edges, and 2 vertices (hence χ = 0).
– We can now start with a polygonated surface, remove two faces, and glue on a cylinder

along the two resulting boundaries; altogether, we will have removed two faces, and
added one face and one edge, hence decreased χ by 2.

– If we add a handle to S2, we obtain a torus, so we see again that χ of the torus is 2.
– In general, the genus g(S) of a compact surface S ⊂ R3 is its number of handles

(equivalently, the number of “cuts” that need to be made in order to turn it into a
sphere); hence a surface has genus 0, a torus has genus 1, and if we attach another
handle, we get a surface of genus 2 (a kind of “double torus”).

– Since χ(S2) = 2, we see in general that the Euler characteristic of a genus g surface is

χ = 2− 2g.

– Note that besides the two special cases g = 0 (the sphere) and g = 1 (the sphere) the
total Gaussian curvature is always negative.

• Gauss-Bonnet with boundary
– The proof of Gauss-Bonnet involves introducing two generalizations of it, which are

interesting in their own right.
– The first concerns surfaces with boundary, and says that if S is a surface with boundary,

then

(4)

∫
S

K +

∫
∂S

κg = 2πχ(S).

(Note that κg in principle depends on an orientation of S, but switching the orientation
changes both the direction of the induced orientation on the boundary curve, and the
sign of κg, so these will cancel out.)

– Note that if ∂S = ∅, this recovers the old formula.
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– In particular, this shows that the Euler characteristic of a surface with boundary is
also independent of the triangulation (which we didn’t know yet).

– The second variant is about a polygonal region R on a surface S – i.e., it is the case
where we have not only boundaries, but corners. In this case, the formula is:

(5)

∫
R

K +

∫
∂R

κg +
∑
i

αi = 2π

where the sum
∑
i αi is over the external angles at the corners of the polygon. Note

that we might also write the right side as 2πχ(R) since the Euler characteristic of a
disk is 1− 1 + 1 = 1.

– Compare this with the Umlaufsatz:
∫ b
a
κs(t) +

∑n
i=1 αi = 2π.

– (As stated, this version isn’t quite a generalization of (4), since a whole surface will
not in general be a polygonal region, but one can formulate a more general version of
the theorem which really is a generalization of (4), see Tapp Theorem 6.8.)

• Geodesic polygons
– Though the polygonal version (5) of Gauss-Bonnet will mainly be a tool for us to

prove the version (4) for a whole surface, it is actually very interesting in its own right,
especially in the case of geodesic polygons, i.e., polygons whose edges are geodesics, so
that the term κg vanishes.

– In the plane, where K = 0, it then just reduces to the formula
∑
i αi = 2π, or the

equivalent version with internal angles
∑
βi = (n− 2)π.

– Another interesting example to consider is that of spherical geometry, i.e., the study
of figures formed out of great circles on the sphere.

– Here, we see, for example, that the usual angle sum of π for a triangle is increased
(the triangles are “fatter”), and moreover the defect

∫
R
K is proportional to the area

of the triangle.
(In particular, very small triangles have angle sum nearly π, as on a small scale, any
surface is “nearly flat”.)

– There is a third famous case – called hyperbolic geometry – which is that of a surface
with constant negative rather than positive Gaussian curvature, K = −1.

– It is difficult to come across such surfaces in R3, but there is a famous “abstract”
surface with this property called the hyperbolic plane, which we do not have time to
explain now.

– In any case, here, the triangles are instead thinner, and the defect again is proportional
to the area of the triangle.

– The dutch artist M.C. Escher made some famous and beautiful artistic renditions of
the hyperbolic plane, which you should look at.

• Sketch of the proof
– Proving the Gauss-Bonnet theorem has two steps: first prove (5), and then use that

to prove (4).
– The proof of (5) is the more difficult but (somewhat) less interesting part. There are

two basic ideas involved: (i) use Stokes’ theorem to relate the integral
∫
R
K over the

interior to the integral
∫
κg over the boundary, and (ii) use a variant of the argument

from the Umlaufsatz (including the part about smoothing the corners) to relate the
integral

∫
κg to a “total change of angle”, which again comes out to be 2π.
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– The fun part of the proof is deducing the Gauss-Bonnet theorem (4) for a whole surface,
assuming the version (5) about polygonal regions.

– Choose a finite triangulation T1, . . . TF of the given surface(-with-boundary) S.
– By assumption the equation (5) holds with R = Ti for each i.
– Let us sum both sides of this equation over all i. On the right-hand side, we just get

2πF .
– The first term on the left-hand side simply adds up to

∫
S
K.

– The sum of the terms
∫
∂Ti

κg give the sum over all the edges e of all the triangles of∫
e
κg. However, each interior edge (i.e., edge which is not on a boundary) is counted

twice with opposite signs (because it has the opposite induced orientation from the
two adjacent triangles), hence these cancel out. We are thus left with

∫
∂S
κg.

– Finally, the terms
∑
i αi add up to the sum of all the external angles of all the vertices

of all the triangles.
– Recall that the external angle αi is π − βi, where βi is the internal angle.
– Hence, we can write this as Aπ−

∑
βi, where A is the total number of angles, and the

second term is the sum of all the internal angles (at all vertices).
– Now the sum of all the internal angles at an interior vertex is 2π, whereas at an

exterior vertex (i.e., one lying on ∂S), it is just π. Hence
∑
βi = 2πVint + πVext.

– On the other hand, the number angles at a given interior vertex v is simply the number
of edges Ev emanating from V , whereas at an exterior vertex it is Ev−1. Hence, since
each edge occurs at two vertices, summing them all up gives A = 2E − Vext.

– Hence, we have Aπ −
∑
βi = (2E − Vext)π − (2πVint + Vext) = 2π(E − V ).

– Adding everything up, we thus have∫
S

K +

∫
∂S

κg + 2π(E − V ) = 2πF,

which is the Gauss-Bonnet formula.
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