Problem 1. Spivak 3-1

Problems. 3-1. Let $f: [0,1] \times [0,1] \rightarrow \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} 0 & \text{if } 0 \le x < \frac{1}{2}, \\ 1 & \text{if } \frac{1}{2} \le x \le 1. \end{cases}$$

Show that f is integrable and $\int_{[0,1\times[0,1]} f = \frac{1}{2}$.

Problem 2. Spivak 3-2

3-2. Let $f: A \to \mathbf{R}$ be integrable and let g = f except at finitely many points. Show that g is integrable and $\int_A f = \int_A g$.

Problem 3. Spivak 3-3, part (a)

3-3. Let f,g: A → R be integrable.
(a) For any partition P of A and subrectangle S, show that

$$m_{\mathcal{S}}(f) + m_{\mathcal{S}}(g) \le m_{\mathcal{S}}(f+g)$$
 and $M_{\mathcal{S}}(f+g) \le M_{\mathcal{S}}(f) + M_{\mathcal{S}}(g)$

and therefore

$$\begin{array}{ll} L(f,P) + L(g,P) \leq L(f+g,P) & \text{and} & U(f+g,P) \\ & \leq U(f,P) + U(g,P). \end{array}$$

Problem 4. Spivak 3-5

3-5. Let $f,g: A \to \mathbb{R}$ be integrable and suppose $f \notin g$. Show that $\int_A f \leq \int_A g$.

Problem 5. Spivak 3-6

3-6. If
$$f: A \to \mathbf{R}$$
 is integrable, show that $|f|$ is integrable and $|\int_A f| \le \int_A |f|$.

Hint: One approach is to first show that if f is integrable, then so is $\max(0, f)$, and $\int_A f \leq \int_A \max(0, f)$; then use that $|f| = |-f| = \max(0, f) + \max(0, -f)$ and apply the results of the previous problems.