Problem 1. Spivak 3-1
Problems. 3-1. Let $f:[0,1] \times[0,1] \rightarrow \mathbf{R}$ be defined by

$$
f(x, y)= \begin{cases}0 & \text { if } 0 \leq x<\frac{1}{2}, \\ 1 & \text { if } \frac{1}{2} \leq x \leq 1 .\end{cases}
$$

Show that f is integrable and $\int_{[0,1 \times[0,1]} f=\frac{1}{2}$.

Problem 2. Spivak 3-2
3-2. Let $f: A \rightarrow \mathbf{R}$ be integrable and let $g=f$ except at finitely many points. Show that g is integrable and $\int_{A} f=\int_{A} g$.

Problem 3. Spivak 3-3, part (a)
3-3. Let $f, g: A \rightarrow \mathbf{R}$ be integrable.
(a) For any partition P of A and subrectangle S, show that
$m_{S}(f)+m_{S}(g) \leq m_{S}(f+g) \quad$ and $\quad M_{S}(f+g)$

$$
\leq M_{S}(f)+M_{S}(g)
$$

and therefore

$$
\begin{array}{ll}
L(f, P)+L(g, P) \leq L(f+g, P) \quad \text { and } \quad & U(f+\emptyset, P) \\
\leq U(f, P)+U(g, P) .
\end{array}
$$

Problem 4. Spivak 3-5
3-5. Let $f, g: A \rightarrow \mathbf{R}$ be integrable and suppose f. Show that $\int_{A} f \leq \int_{A} g$.

Problem 5. Spivak 3-6
3-6. If $f: A \rightarrow \mathbf{R}$ is integrable, show that $|f|$ is integrable and $\mid \int_{A f \mid} \leq$ $\int_{1}|f|$.

Hint: One approach is to first show that if f is integrable, then so is $\max (0, f)$, and $\int_{A} f \leq \int_{A} \max (0, f)$; then use that $|f|=|-f|=\max (0, f)+\max (0,-f)$ and apply the results of the previous problems.

