Problem 1. Spivak 3-14
Problems. 3-14. Show that if $\underset{.}{ } . g: A \rightarrow \mathbf{R}$ are integrable, so is $f \cdot g$.

Hint: You may want to first prove it in the case $f, g \geq 0$. You can then use that $f=f_{+}+f_{-}:=\frac{1}{2}(f+|f|)+$ $\frac{1}{2}(f-|f|)$ and $g=g_{+}+g_{-}:=\frac{1}{2}(g+|g|)+\frac{1}{2}(g-|g|)$ and apply the results you proved in the last homework.

Problem 2. Spivak 3-8
Problems. 3-8. Prove that $\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{n}, b_{n}\right]$ does not have content 0 if $a_{i}<b_{i}$ for each i.

Problem 3. Spivak 3-15
3-15. Show that if C has content 0 , then $C \subset A$ for some closed rectangle A and C is Jordan-measurable and $\int_{A} \chi_{C}=0$.

Problem 4. Spivak 3-26
3-26. Let $f:[a, b] \rightarrow \mathbf{R}$ be integrable and non-negative and let $A_{f}=$ $\{(x, y): a \leq x \leq b$ and $0 \leq y \leq f(x)\}$. Show that A_{f} is Jordanmeasurable and has area $\int_{a}^{b} f$.

Problem 5. Spivak 3-32
3-32.* Let $f:[a, b] \times[c, d] \rightarrow \mathbf{R}$ be continuous and suppose $D_{2} f$ is continuous. Define $F(y)=\int_{a}^{b} f(x, y) d x$. Prove Leibnitz's rule: $F^{\prime}(y)$ $=\int_{a}^{b} D_{2} f(x, y) d x$. Hint: $F(y)=\int_{a}^{b} f(x, y) d x=\int_{a}^{b}\left(\int_{c}^{y} D_{2} f(x, y) d y+\right.$ $f(x, c)) d x$. (The proof will show that continuity of $D_{2} f$ may be replaced by considerably weaker hypotheses.)

Problem 6. Spivak 3-35
3-35.* (a) Let $g: \mathbf{R}^{\boldsymbol{n}} \rightarrow \mathbf{R}^{\boldsymbol{n}}$ be a linear transformation of one of the following types:

$$
\begin{aligned}
& \left\{\begin{array}{l}
g\left(e_{i}\right)=e_{i} \\
g\left(e_{j}\right)
\end{array}=a e_{j}\right.
\end{aligned} \quad i \neq j
$$

If U is a rectangle, show that the volume of $g(U)$ is $|\operatorname{det} g| \cdot v(U)$.
(b) Prove that $|\operatorname{det} g| \cdot v(U)$ is the volume of $g(U)$ for any linear transformation $g: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$. Hint: If $\operatorname{det} g \neq 0$, then g is the composition of linear transformations of the type considered in (a).

Problem 7. Spivak 3-36
3-36. (Cavalieri's principle). Let A and B be Jordan-measurable subsets of \mathbf{R}^{3}. Let $A_{c}=\{(x, y):(x, y, c) \in A\}$ and define B_{c} similarly. Suppose each A_{c} and B_{c} are Jordan-measurable and have the same area. Show that A and B have the same volume.

