Homework 5

Due: Wednesday, February 14
Math 435, Fall 2024

Problem 1. Let V and W be vector spaces.
(a) Prove that the operation $\otimes: \mathcal{T}^{k} \times \mathcal{T}^{l} \rightarrow \mathcal{T}^{k+l}$ is bilinear, i.e., given k-tensors $S, S^{\prime} \in \mathcal{T}^{k}$, l-tensors $T, T^{\prime} \in \mathcal{T}^{l}$, and $a \in \mathbb{R}$, we have:
$\left(S+S^{\prime}\right) \otimes T=S \otimes T+S^{\prime} \otimes T \quad S \otimes\left(T+T^{\prime}\right)=S \otimes T+S \otimes T^{\prime} \quad(a S) \otimes T=a(S \otimes T)=S \otimes(a T)$
(b) Prove that \otimes is associative, i.e., for any k-tensor S, l-tensors T, and m-tensor U, we have $(S \otimes T) \otimes U=$ $S \otimes(T \otimes U)$
(c) Prove that for any linear map $f: V \rightarrow W$ and tensors S and T on W, we have $f^{*}(S \otimes T)=f^{*} S \otimes f^{*} T$.

Problem 2. Let V and W be vector spaces.
(a) Prove that $\wedge: \Lambda^{k}(V) \times \Lambda^{l}(V) \rightarrow \Lambda^{k+l}(V)$ is bilinear
(b) Prove that for $\wedge: \Lambda^{k}(V)$ and $\Lambda^{l}(V)$, we have $\omega \wedge \eta=(-1)^{k l} \eta \wedge \omega$.

Hint: Show that there is a permutation $\tau \in \mathrm{S}_{k+l}$ such that for any $v_{1}, \ldots, v_{k+l} \in V$, we have

$$
\omega\left(v_{1}, \ldots, v_{k}\right) \cdot \eta\left(v_{l+1}, \ldots, v_{l+k}\right)=\eta\left(v_{\tau(1)}, \ldots, v_{\tau(l))}\right) \cdot \omega\left(v_{\tau(l+1)}, \ldots, v_{\tau(l+k)}\right),
$$

and hence, given any permutation $\sigma \in \mathrm{S}_{k+l}$, we have

$$
\begin{aligned}
\omega\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right) \cdot \eta\left(v_{\sigma(l+1)}, \ldots, v_{\sigma(l+k)}\right) & =\eta\left(v_{\tau(\sigma(1))}, \ldots, v_{(\tau(\sigma(l))}\right) \cdot \omega\left(v_{(\tau(\sigma(l+1))}, \ldots, v_{(\tau(\sigma(l+k))}\right), \\
& =\eta\left(v_{(\tau \circ \sigma)(1))}, \ldots, v_{(\tau \circ \sigma)(l))}\right) \cdot \omega\left(v_{(\tau \circ \sigma)(l+1)}, \ldots, v_{(\tau \circ \sigma)(l+k)}\right)
\end{aligned}
$$

where $\tau \circ \sigma$ is the composite permutation. What is $\operatorname{sgn} \tau$?
Then recall that composing with τ (i.e., the operation $\sigma \mapsto \tau \circ \sigma$) is a bijection (with inverse $\sigma \mapsto \tau^{-1} \circ \sigma$), hence $\sum_{\sigma \in \mathrm{S}_{k+l}} a_{\sigma}=\sum_{\sigma \in \mathrm{S}_{k+l}} a_{\tau \circ \sigma}$ for any collection $\left\{a_{\sigma}\right\}_{\sigma \in \mathrm{S}_{k+l}}$.
(c) Prove that for any linear map $f: V \rightarrow W$ and alternating tensors ω and η on W, we have $f^{*}(\omega \wedge \eta)=$ $f^{*}(\omega) \wedge f^{*}(\eta)$.

Problem 3. Spivak 4-1

Problems. 4-1.* Let e_{1}, \ldots, e_{n} be the usual basis of \mathbf{R}^{n} and let $\varphi_{1}, \ldots, \varphi_{n}$ be the dual basis.
 (a) Show that $\varphi_{i_{1}} \wedge \cdots \wedge \varphi_{i_{k}}\left(e_{i_{1}}, \ldots, e_{i_{k}}\right)=1$. What would the right side be if the factor $(k+l)!/ k!l!$ did not appear in the definition of \wedge ?

(b) Show that $\varphi_{i_{1}} \wedge \cdots \wedge \varphi_{i_{k}}\left(v_{1}, \ldots, v_{k}\right)$ is the determinant of the $k \times k$ minor of $\left(\begin{array}{c}v_{1} \\ \cdot \\ \cdot \\ \cdot \\ v_{k}\end{array}\right)$ obtained by selecting columns
i_{1}, \ldots, i_{k}

Problem 4. Show that for any vector space V and any $\varphi_{1}, \ldots, \varphi_{k} \in V^{*}$ and any $v_{1}, \ldots, v_{k} \in V$, we have $\varphi_{1} \wedge \cdots \wedge \varphi_{k}\left(v_{1}, \ldots, v_{k}\right)=\operatorname{det}\left(\left[\varphi_{i}\left(v_{j}\right)\right]_{i, j=1}^{k}\right)$.

