Problem 1. Let ω_{1}, ω_{2} be (smooth) differential forms defined on \mathbb{R}^{n}, let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a smooth function, and let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be a smooth map. Prove that:
(i) $f^{*}\left(\omega_{1}+\omega_{2}\right)=f^{*} \omega_{1}+f^{*} \omega_{2}$ (assuming ω_{1}, ω_{1} are both k-forms for some k)
(ii) $f^{*}\left(g \cdot \omega_{1}\right)=(g \circ f) \cdot f^{*} \omega_{1}$
(iii) $f^{*}\left(\omega_{1} \wedge \omega_{2}\right)=f^{*} \omega_{1} \wedge f^{*} \omega_{2}$

Problem 2. Spivak 4-14
4-14. Let c be a differentiable curve in \mathbf{R}^{n}, that is, a differentiable function $c:[0,1] \rightarrow \mathbf{R}^{n}$. Define the tangent vector v of c at t as $c_{*}\left(\left(e_{1}\right)_{t}\right)=\left(\left(c^{1}\right)^{\prime}(t), \ldots,\left(c^{n}\right)^{\prime}(t)\right)_{c(t)}$. If $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$, show that the tangent vector to $f \circ c$ at t is $f_{*}(v)$.

Problem 3. Spivak 4-13 (b)
(b) If $f, g: \mathbf{R}^{n} \rightarrow \mathbf{R}$, show that $d(f \cdot g)=f \cdot d g+g \cdot d f$.

Problem 4. Spivak 4-18
4-18. If $f: \mathbf{R}^{\boldsymbol{n}} \rightarrow \mathbf{R}$, define a vector field $\operatorname{grad} f$ by

$$
(\operatorname{grad} f)(p)=D_{1} f(p) \cdot\left(e_{1}\right)_{p}+\cdots+D_{n} f(p) \cdot\left(e_{n}\right)_{p}
$$

For obvious reasons we also write $\operatorname{grad} f=\nabla f$. If $\nabla f(p)=w_{p}$, prove that $D_{v} f(p)=\langle v, w\rangle$ and conclude that $\nabla f(p)$ is the direction in which f is changing fastest at p.

Problem 5. Spivak 4-19 parts (a) and (b).
4-19. If F is a vector field on R^{3}, define the forms

$$
\begin{aligned}
& \omega_{F}^{1}=F^{1} d x+F^{2} d y+F^{3} d z, \\
& \omega_{F}^{2}=F^{1} d y \wedge d z+F^{2} d z \wedge d x+F^{3} d x \wedge d y .
\end{aligned}
$$

(a) Prove that

$$
\begin{aligned}
d f & =\omega_{\operatorname{grad} f}^{1} \\
d\left(\omega_{F}^{1}\right) & =\omega_{\operatorname{curl} F}^{2} \\
d\left(\omega_{F}^{2}\right) & =(\operatorname{div} F) d x \wedge d y \wedge d z
\end{aligned}
$$

(b) Use (a) to prove that

$$
\begin{aligned}
\operatorname{curl} \operatorname{grad} f & =0, \\
\operatorname{div} \operatorname{curl} F & =0 .
\end{aligned}
$$

