Homework 8

Due: Wednesday, March 20
Math 435, Fall 2024

Problem 1. Let $M \subset \mathbb{R}^{n}$ be a smooth k manifold given by $M=\left\{x \in \mathbb{R}^{n} \mid f(x)=y\right\}$, where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-k}$ is a smooth map for which y is a regular value.
Show that for any $x \in M$, the tangent space $\mathrm{T}_{x} M$ is the nullspace of the linear map $f_{*}: \mathbb{R}_{x}^{n} \rightarrow \mathbb{R}_{y}^{k}$:

$$
\mathrm{T}_{x} M=\left\{v \in \mathbb{R}_{x}^{n} \mid f_{*}(v)=0\right\}
$$

Problem 2. Let $M \subset \mathbb{R}^{m}$ and $N \subset \mathbb{R}^{n}$ be manifolds, fix a point $y \in N$, and let $f: M \rightarrow N$ be the constant map $f(x)=y$.
Show that for any $x \in M$ the derivative $f_{*}: \mathrm{T}_{x} M \rightarrow \mathrm{~T}_{f(x)} N$ of f at x is the zero map: $f_{*}(v)=0$ for all $v \in \mathrm{~T}_{x} M$.
Problem 3. Prove that the union $X=\{(x, y) \mid x=0$ or $y=0\} \subset \mathbb{R}^{2}$ of axes in \mathbb{R}^{2} is not a (smooth) 1-manifold.
Hint: If X were a 1-manifold, what would its tangent space $\mathrm{T}_{0} X$ at the origin be?
Problem 4. Spivak 5-10
5-10. Suppose \mathbb{C} is a collection of coordinate systems for M such that
(1) For each $x \in M$ there is $f \in \mathbb{C}$ which is a coordinate system around x; (2) if $f, g \in \mathbb{C}$, then $\operatorname{det}\left(f^{-1} \circ g\right)^{\prime}>0$. Show that there is a unique orientation of M such that f is orientation-preserving if $f \in \mathbb{C}$.
(Recall that what Spivak calls a "coordinate system" is what I have been calling a "parametrization".)
Problem 5. Let $\mathrm{S}^{2}=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2}=1\right\} \subset \mathbb{R}^{3}$ be the unit sphere, and let $i: \mathrm{S}^{2} \rightarrow \mathbb{R}^{3}$ be the inclusion map $i(x, y, z)=(x, y, z)$.
Let $\omega \in \Omega^{2}\left(\mathbb{R}^{3}\right)$ be the 2 -form

$$
\omega=\mathrm{d} x \wedge \mathrm{~d} y
$$

Show that the 2-form $i^{*} \omega \in \Omega^{2}\left(\mathrm{~S}^{2}\right)$ on S^{2} vanishes along the equator $E=\left\{(x, y, z) \in \mathrm{S}^{2} \mid z=0\right\}$, i.e., $\left(i^{*} \omega\right)(p)=0$ for all $p \in E$.
Hint: Show that $\left(e_{3}\right)_{p} \in \mathrm{~T}_{p} \mathrm{~S}^{2}$ for all $p \in E$, where $e_{3}=(0,0,1)$.

