Homework 10

Due: Wednesday, April 3
Math 435, Fall 2024

Problem 1. Tapp 1.6
EXERCISE 1.6. If all three component functions of a space curve γ are quadratic functions, prove that the image of γ is contained in a plane.
(Recall that a plane is a 2-dimensional affine subset of \mathbb{R}^{3}, i.e., a subset defined by a single (not necessarily homogeneous) linear equation $a x+b y+c z=d$, or equivalently a set of the form $\{\mathbf{p}+s \vec{u}+t \vec{v} \mid s, t \in \mathbb{R}\}$ for some $\left.\mathbf{p}, \vec{u}, \vec{v} \in \mathbb{R}^{3}\right)$.

Problem 2. Tapp 1.8

EXERCISE 1.8. Compute the arc length of $\gamma(t)=\left(2 t, 3 t^{2}\right), t \in[0,1]$.

Problem 3. Tapp 1.9
Exercise 1.9. Let $a, b>0$. Find the maximum and minimum speed of the ellipse $\gamma(t)=(a \cos t, b \sin t)$.

Problem 4. Tapp 1.16
EXERCISE 1.16. Let $\boldsymbol{\gamma}$ be a logarithmic spiral, as defined in Exercise 1.3 on page 6 . Prove that the angle between $\gamma(t)$ and $\gamma^{\prime}(t)$ is a constant function of t.

Problem 5. Let $\vec{x}=(0,2), \vec{y}=(3,4) \in \mathbb{R}^{2}$. Write \vec{x} as a sum of two vectors, one parallel to \vec{y} and the other orthogonal to \vec{y}.

Problem 6. Tapp 1.18
ExERCISE 1.18. Let $\mathbf{x}=(1,2,3) \in \mathbb{R}^{3}$ and let $\mathcal{V}=\operatorname{span}\{(1,0,1),(1,1,0)\}$. Write \mathbf{x} as a sum of two vectors, one in \mathcal{V} and the other orthogonal to every member of \mathcal{V}.

Problem 7. Tapp 1.24
EXERCISE 1.24. If $t_{0} \in I$ is the time at which the curve $\gamma: I \rightarrow \mathbb{R}^{n}$ is farthest from the origin, prove that $\gamma\left(t_{0}\right)$ is orthogonal to $\gamma^{\prime}\left(t_{0}\right)$.

Here, assume that I is an open interval.
(Recall that the geometric meaning of $\gamma\left(t_{0}\right) \perp \gamma^{\prime}\left(t_{0}\right)$ is that $\gamma^{\prime}\left(t_{0}\right)$ is orthogonal to the vector connecting $\gamma\left(t_{0}\right)$ to the origin.)

