Homework 11

Due: Wednesday, April 10
Math 435, Fall 2024

Problem 1. Tapp 1.23
ExERCISE 1.23. Let $\gamma: I \rightarrow \mathbb{R}^{3}$ be a regular space curve, and let $P \subset \mathbb{R}^{3}$ be a plane that does not intersect the image of γ. If γ comes closest to P at time t_{0}, prove that $\gamma^{\prime}\left(t_{0}\right)$ is parallel to P.

Recall that the distance from a point \mathbf{p} to a plane P is by definition the distance from \mathbf{p} to the closest point to \mathbf{p} on P. If \vec{n} is a normal vector to P and $\mathbf{q} \in P$ is any point on P, then the distance is $\left|\operatorname{Proj}_{\vec{n}}(\mathbf{p}-\mathbf{q})\right|$.
If $P=\{(x, y, z) \mid a x+b y+c z=d\}$, then (a, b, c) is a normal vector, and if $P=\{\mathbf{q}+s \vec{u}+t \vec{v} \mid s, t \in \mathbb{R}\}$, then $\vec{u} \times \vec{v}$ is a normal vector.

Problem 2. Tapp 1.29
ExERCISE 1.29. Consider the following pair of plane curves:

$$
\begin{aligned}
& \gamma(s)=(\cos s, \sin s), \quad s \in(-\pi, \pi) \\
& \tilde{\gamma}(t)=\left(\frac{1-t^{2}}{1+t^{2}}, \frac{2 t}{1+t^{2}}\right), \quad t \in \mathbb{R}
\end{aligned}
$$

Verify that $\tilde{\gamma}$ is a reparametrization of γ.HINT: $t=\tan (s / 2)$.

Problem 3. Tapp 1.36
ExERCISE 1.36. Prove or disprove: For a regular parametrized curve γ in \mathbb{R}^{n}, the measurement $f(t)=\frac{\left|\gamma^{\prime \prime}(t)\right|}{\left|\gamma^{\prime}(t)\right|^{2}}$ is independent of parametrization.

Problem 4. Show that the curvature of a regular curve is constantly zero if and only if its trace lies on a line.
Problem 5. Tapp 1.39
ExErcise 1.39. For constants $a, b, c>0$, consider the "generalized helix" defined as $\gamma(t)=(a \cos t, b \sin t, c t), t \in \mathbb{R}$. Where is the curvature maximal and minimal?

Problem 6. Tapp 1.43
ExERCISE 1.43. Let $\gamma: I \rightarrow \mathbb{R}^{n}$ be a regular curve. Assume that the function $t \mapsto|\gamma(t)|$ has a local maximum value of r occurring at time t_{0}. Prove that

$$
\kappa\left(t_{0}\right) \geq \frac{1}{r}
$$

Is there any upper bound for $\kappa\left(t_{0}\right)$ under these conditions?

