Homework 12

Due: Wednesday, April 17
Math 435, Fall 2024

Problem 1. Tapp 1.47
ExERCISE 1.47. Prove that the trace of every regular plane curve with constant nonzero signed curvature must equal a circle or a segment of a circle.

Problem 2. Find a plane curve $\gamma: \mathbb{R} \rightarrow \mathbb{R}^{2}$ whose angle function is $\theta(t)=2 t$.
Problem 3. Tapp 1.56 in the case where m and n have opposite parities (i.e., one is even, an one is odd).
EXERCISE 1.56. Let m, n be positive integers. Find the rotation index of the Lissajous curve $\gamma:[0,2 \pi] \rightarrow \mathbb{R}^{2}$ (see Fig. 1.26) defined as

Figure 1.26. The Lissajous curve $\gamma(t)=(\cos (5 t), \sin (4 t))$, $t \in[0,2 \pi]$

Again, you only need to consider the case where one of m and n is even and one is odd.
Hint: What happens to the γ when you reflect it across the x or y axis? What happens to its signed curvature?
Problem 4. Tapp 1.62
EXERCISE 1.62. Calculate the curvature function and torsion function for the curve $\gamma(t)=\left(t, t^{2}, t^{3}\right), t \in \mathbb{R}$.

Hint: First prove the formula $\tau=\frac{\left\langle\gamma^{\prime} \times \gamma^{\prime \prime}, \gamma^{\prime \prime \prime}\right\rangle}{\left|\gamma^{\prime} \times \gamma^{\prime \prime}\right|^{2}}$ from Tapp Exercise 1.65.
Problem 5. Compute the torsion function of the helix $\gamma(t)=(\cos t, \sin t, t), t \in \mathbb{R}$.
Problem 6. Tapp 1.68
ExERCISE 1.68. Let $\gamma: I \rightarrow \mathbb{R}^{3}$ be a space curve, and let $t_{0} \in I$ with $\kappa\left(t_{0}\right) \neq 0$. Let P denote the osculating plane at t_{0} (translated to $\left.\gamma\left(t_{0}\right)\right)$. For $t \in I$ near t_{0}, let $\boldsymbol{\beta}(t)$ denote the point of P closest to $\gamma(t)$. Prove that γ and $\boldsymbol{\beta}$ have the same curvature at time t_{0}.

Hint: Find an explicit formula for $\beta(t)$; note that $\vec{b}\left(t_{0}\right)$ is a normal vector to P.
Problem 7. Tapp 1.69
EXERCISE 1.69. Let $\boldsymbol{\gamma}: I \rightarrow \mathbb{R}^{3}$ be a regular space curve (possibly with points where $\kappa=0$ and hence where τ is undefined). Prove or disprove:
(1) If the trace of γ lies in a plane, then τ equals zero everywhere it is defined.
(2) If τ equals zero everywhere it is defined, then the trace of γ lies in a plane.

