Homework 13

Due: Wednesday, April 24
Math 435, Fall 2024

Problem 1. Tapp 3.81
Exercise 3.81. Let $f: S_{1} \rightarrow S_{2}$ be a diffeomorphism between regular surfaces. Prove that f is an isometry if and only if for every regular curve $\gamma:[a, b] \rightarrow S_{1}$, the length of γ equals the length of $f \circ \gamma$.

Problem 2. Tapp 3.101
Exercise 3.101. Prove that the following are equivalent for a diffeomorphism $f: S \rightarrow \tilde{S}$ between regular surfaces:
(1) f is an isometry.
(2) For every surface patch $\sigma: U \subset \mathbb{R}^{2} \rightarrow V \subset S$, the first fundamental form of σ equals the first fundamental form of $f \circ \sigma$.
(3) Every $p \in S$ is covered by a surface patch σ such that the first fundamental form of σ equals the first fundamental form of $f \circ \sigma$.

In (2) and (3), what is meant is that the functions E, F, G are the same for σ and for $f \circ \sigma$.
Problem 3. Let $\gamma=\left(\gamma_{1}, \gamma_{2}\right):[a, b] \rightarrow \mathbb{R}^{2}$ be a simple closed curve and let $S \subset \mathbb{R}^{3}$ be the surface

$$
S=\left\{\left(\gamma_{1}(u), \gamma_{2}(u), v\right) \mid u \in[a, b], v \in \mathbb{R}\right\}
$$

Prove that S is isometric to the standard cylinder $C=\left\{(x, y, z) \mid x^{2}+y^{2}=R^{2}\right\}$ of radius R for some R.
Problem 4. Tapp 3.103
Exercise 3.103. Let $\gamma: \mathbb{R} \rightarrow \mathbb{R}^{3}$ be a helix of the form $\gamma(\theta)=(\cos \theta$, $\sin \theta, c \theta$), where $c \neq 0$ is a constant, shown green in Fig. 3.39. For each value of θ, consider the infinite line (shown red) through $\gamma(\theta)$ that is parallel to the $x y$-plane and intersects the z-axis. The union of all these lines is called a helicoid, visualized as the surface swept out by the propeller of a rising helicopter (or lowering if $c<0$). It can be covered by the single surface patch

$$
\sigma(\theta, t)=(t \cos \theta, t \sin \theta, c \theta), \quad t, \theta \in(-\infty, \infty)
$$

(1) Describe the first fundamental form in these coordinates.
(2) What is the area of the portion of the helicoid corresponding to $0<t<1$ and $0<\theta<4 \pi$?
(3) At a point p of the helicoid, how does the angle that a unit normal vector at p makes with the z-axis depend on the distance of p to the z-axis?

For (3), use the unit normal with positive z-component, and in particular, answer: (i) does the angle increase or decrease as the distance from the z-axis grows, (ii) what is the limiting angle as the distance goes to 0 or ∞ ?

Problem 5. Let $\sigma: U \rightarrow V \subset S$ be a surface patch on a surface S with first fundamental form $E \mathrm{~d} u^{2}+2 F \mathrm{~d} u \mathrm{~d} v+G \mathrm{~d} v^{2}$. Prove that σ is angle-preserving (i.e., $\angle(\vec{u}, \vec{v})=\angle\left(\mathrm{d} \sigma_{\mathbf{p}}(\vec{u}), \mathrm{d} \sigma_{\mathbf{p}}(\vec{v})\right)$ for all $\mathbf{p} \in U$ and $\left.\vec{u}, \vec{v} \in \mathrm{~T}_{\mathbf{p}} U=\mathbb{R}^{2}\right)$ if and only if $E=G$ and $F=0$.
Hint: You may want to first prove that if $T: X \rightarrow Y$ is a linear map between two-dimensional inner product spaces, then T is angle-preserving if and only if there is some constant C such that $\langle T \vec{u}, T \vec{v}\rangle=C\langle\vec{u}, \vec{v}\rangle$ for all $\vec{u}, \vec{v} \in X$. For the (\Rightarrow) direction, choose an orthonormal basis \vec{b}_{1}, \vec{b}_{2} for X, and first prove that $\left|T \vec{b}_{1}\right|=\left|T \vec{b}_{2}\right|$ by showing that otherwise, $\angle\left(\vec{b}_{1}, \vec{b}_{1}+\vec{b}_{2}\right) \neq \angle\left(T\left(\vec{b}_{1}\right), T\left(\vec{b}_{1}+\vec{b}_{2}\right)\right)$. Setting $c:=\left|T \vec{b}_{1}\right|=\left|T \vec{b}_{2}\right|$, conclude from this that $|T \vec{v}|=c \cdot|\vec{v}|$ for all $\vec{v} \in X$, and thence that $\langle T \vec{u}, T \vec{v}\rangle=c^{2}\langle\vec{u}, \vec{v}\rangle$ for all $\vec{u}, \vec{v} \in X$.

