Math 435: Lecture 41
April 24, 2024

Reference: Tapp, pp. Chapters 4 and 5

Topics:
e Second fundamental form in local coordinates
— As with the first fundamental form, we can also represent the second fundamental form
in local coordinates.
— That is, given a surface patch o: U = V C S, we can consider the function (F2)q: R? =
TqU — R given by (F2)q(¥) = Ip(dog(¥)).
— As before, we can write this in the form

Fy =edu?® 4 2f dudv + gdv?

where now e = (o), f = W(ou,04), and g = II(0y).
— We then obtain such formulas as
2
K= 527_];2 H= eGEéf# (ky ko) = {H — VH? — K,H + VH? — K}.
e Total Gaussian curvature

— Given a plane curve v: [a,b] — R, its total signed curvature f; ks dt can be interpreted
as the signed length of the curve : [a,b] — S', where by “signed” length we mean
f[a,b] " AV, where dV is the volume form on the circle (with its standard orientation).

— Indeed, the oriented unit tangent vector at ¥ € S! is precisely Rgo?', and hence

Fav(ey) = dV(E) = (', Rool ) = ks = ks dt(€1).
— The total signed curvature | 5 K dVs of a surface can be given a similar interpretation,

namely as the signed area fs NT dVgz of the Gauss map N:S— 82
— (In fact, this was Gauss’ original definition of K: as the “infinitesimal signed area of
the Gauss map”.)

— In other words, the claim is that NT dVs2 = K dVg. To prove this, let u,
be an orthonormal basis of tangent vector at some point so that dVg (@, v

definition of dV and @ x @ = N (p) by definition of N .

— Let us write —d]\_fp(ﬁ) = ail + b¥ and —dﬁp(ﬁ) = cil + dv. Then, by definition,
K(p) = det(Wp) = det(—dN p) = det [Z Z] = ad — be.

— On the other hand,

)

I m

TpS
1 by

= ((a@i +b7) x (cil +dv), N (p))
= ((ad — be)N (p), N (p))
=ad — bc
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as desired.

e Normal sections

Recall that we defined the normal curvature I, (') of an oriented surface S at a point
p in the direction 7 to be the normal curvature (N (p),~" (to)) of any unit-speed curve
~ on S with 7/ (tg) = U.

However, one can also define them in terms of certain canonically defined curves called
normal sections.

We consider the plane P through p parallel to N (p) and ¥, i.e., with normal vector
ii=N(p)x7.

We now intersect P with S, and we claim that there is some small open set U C R?
containing p such that the intersection S N P N U is a smooth curve, i.e., a smooth
1-manifold.

Indeed, P is the zero-set of the function F(#) = (¥ — p,7) with derivative dF(p) =
i’ (i.e., with gradient VF(p) = 7). And since S it is a 2-manifold, there is some
neighbourhood W of p and smooth function G: W — R with regular value 0 such
that W NS = G~1(0); moreover, we have that VG(p) || N (p), i.e., dG(p) = @ for
some @ || N (p).

It follows that the function H: U — R? given by H(Z) = (F(7),G(¥)) satisfies
H=1(0) = SN PNW, and dH(p) has linearly independent (in fact, orthogonal) rows
A and @ T, and hence has p as a regular point.

It then follows that 0 is a regular value of the restriction of H to some small neigh-
bourhood U C W of p, and hence by the inverse function theorem, C' = H=1(0)NU =
PNSNU is a 1-manifold as claimed.

We can thus find a parametrization C' near p by a unit-speed curve v: (g,¢) — R3?
with v(0) = p.

The smooth curve + is called the normal section of S at p.

By definition, it lies entirely inside the plane P, and hence «” lies inside P as well.
Since 4" (0) L ~/(0), it follows that "' || N (p), and hence that

#(0) = 7" (0)] = (v"(0), N (p)) = [p(¥)].
We conclude that the absolute value of the normal curvature 11, (V') is the curvature
at p of the normal section in the direction ¥ .

e Geodesics

Let v be a unit-speed curve on an oriented surface .S with unit normal vector field N.
We can decompose @ =" as @ = @ +a* with respect to V.

We have already identified the second term in terms of the normal curvature at =
FinN .

Since v is unit-speed, @ is orthogonal to both ¥ and N , and hence is parallel to

Roo¥ := N x @, the “90 degree counter-clockwise rotation of +' with respect to the
chosen orientation”.
We now set kg = (y”, Rgo?'), so that we have gl = kgRgo (V') and hence

a :KH'N +I€g'R90(17).
The quantity g is called the geodesic curvature of vy, and measure the bending of ~y
relative to the surface.
If S is a plane, then kg is just the signed curvature.
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We see that kg = 0 if and only if 7" || N ; note that whether this holds is independent

of orientation.

— Thus, in general, we define a geodesic on S to be a regular curve ~ such that v (¢) is
orthogonal to S for all t.

— Hence, if v is unit-speed, it is a geodesic if and only if Kz = 0.

— In general, we have: every geodesic v has constant speed. This follows immediately
from the fact that v L ~”.

— On a plane, the geodesics are precisely the lines with constant-speed parametrization.

— We now state two fundamental facts about geodesics without proof.

— Proposition 5.3: for each p € S and each ¥ € TS, there exists a geodesic vz : (a,b) —
S (where 0 € (a,b)) with 75 (0) = p and v, (0) = 7.
Moreover, it is unique in the sense that for any other geodesic 4z : (d,E) — S with
these properties, vy and 45 agree on their common domain (a,b) N (@, b).

— Note that, while we can sometimes choose the domain (a, b) to be all of R (for example,
when S is a plane), this isn’t always the case.
For example, if S is the puncture zy-plane S = {(x,y,2) € R® | z = 0 and (z,y) # (0,0)},
and we take p = (—1,0,0) and ¥ = (1,0, 0), then the maximal domain of vz is (—oo, 1).

— This proposition is important because it allows us identify all the geodesics on a given
surface.

— For example, every geodesic on S? is (a part of) a great circle ~(t) = cos(at)i +
sin(at)7, where @, 7 € S? are orthogonal.
Indeed, the great circles are clearly geodesic (since v/(t) = —asin(at)d + a cos(at)v L
~(t) = N (7(t))), hence for any p € S? and 7 € Tp.S, the unique geodesic 75 through
p with 7% (0) = ¥ must be the great circle vz (t) = cos(at)p + sin(at)v .

— By asimilar argument, we can see that every geodesic on the cylinder C = {(x,y,2) € R® | 22 +y* = 1}
is a heliz y(t) = (cost,sint, ct).

— Next, Corollary 5.23: a curve vy is a geodesic if and only if it is locally length-minimizing.

This means that for any ty in the domain of v, there is some ¢ > 0 such that for any

t1,t2 € (to — €, 10 + €), if we set p =(f1) and q = y(t2), then 7|, ., is the shortest

path on S from p to q, i.e., any other curve a: [a,b] — S from p to q on S has greater

arc-length than ~| [t ,t0]"

[ewrar= [pola =i -n)

where for the last equation, we are using that v has constant speed.

— In particular this tells us immediately that (Corollary 5.24): geodesics are intrinsic.

— This gives us a second proof that the helices are the geodesics on the cylinder, since
we know what the geodesics in the plane are.

e Gauss-Bonnet

— We finish our exploration of surfaces (though there is much more we are not covering
— just look at some of the other sections in Tapp’s book!) with the spectacular Gauss-
Bonnet theorem (which we will discuss, but not prove).
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