
Math 435: Lecture 41
April 24, 2024

Reference: Tapp, pp. Chapters 4 and 5

Topics:

• Second fundamental form in local coordinates
– As with the first fundamental form, we can also represent the second fundamental form

in local coordinates.
– That is, given a surface patch σ : U ∼−→ V ⊂ S, we can consider the function (F2)q : R2 =

TqU → R given by (F2)q(~v ) = IIp(dσq(~v )).
– As before, we can write this in the form

F2 = edu2 + 2f dudv + g dv2

where now e = II(σu), f =W(σu, σv), and g = II(σv).
– We then obtain such formulas as

K =
eg − f2

EG− F 2
H =

eG− 2fF + gE

EG− F 2
{k1, k2} = {H −

√
H2 −K,H +

√
H2 −K}.

• Total Gaussian curvature
– Given a plane curve γ : [a, b]→ R, its total signed curvature

∫ b
a
κs dt can be interpreted

as the signed length of the curve ~t : [a, b] → S1, where by “signed” length we mean∫
[a,b]

~t
∗

dV , where dV is the volume form on the circle (with its standard orientation).

– Indeed, the oriented unit tangent vector at ~v ∈ S1 is precisely R90~v , and hence

~t
∗

dV (~e 1) = dV (~t
′
) = 〈~t ′, R90~t 〉 = κs = κs dt(~e 1).

– The total signed curvature
∫
S
K dVS of a surface can be given a similar interpretation,

namely as the signed area
∫
S
~N
∗

dVS2 of the Gauss map ~N : S → S2.
– (In fact, this was Gauss’ original definition of K: as the “infinitesimal signed area of

the Gauss map”.)

– In other words, the claim is that ~N
∗

dVS2 = K dVS . To prove this, let ~u ,~v ∈ TpS
be an orthonormal basis of tangent vector at some point so that dVS(~u ,~v ) = 1 by

definition of dV and ~u × ~v = ~N (p) by definition of ~N .

– Let us write −d ~N p(~u ) = a~u + b~v and − d ~N p(~v ) = c~u + d~v . Then, by definition,

K(p) = det(Wp) = det(−d ~N p) = det

[
a b
c d

]
= ad− bc.

– On the other hand,

( ~N
∗

dVS2)(~u ,~v ) = dVS2(d ~N p(~u ),d ~N p(~v ))

= 〈d ~N p(~u )× d ~N p(~v ), ~N (p)〉

= 〈(a~u + b~v )× (c~u + d~v ), ~N (p)〉

= 〈(ad− bc) ~N (p), ~N (p)〉
= ad− bc
= K(p) dVS(~u ,~v )
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as desired.
• Normal sections

– Recall that we defined the normal curvature IIp(~v ) of an oriented surface S at a point

p in the direction ~v to be the normal curvature 〈 ~N (p), γ′′(t0)〉 of any unit-speed curve
γ on S with γ′(t0) = ~v .

– However, one can also define them in terms of certain canonically defined curves called
normal sections.

– We consider the plane P through p parallel to ~N (p) and ~v , i.e., with normal vector

~n = ~N (p)× ~v .
– We now intersect P with S, and we claim that there is some small open set U ⊂ R3

containing p such that the intersection S ∩ P ∩ U is a smooth curve, i.e., a smooth
1-manifold.

– Indeed, P is the zero-set of the function F (~x ) = 〈~x − p, ~n〉 with derivative dF (p) =
~n> (i.e., with gradient ∇F (p) = ~n). And since S it is a 2-manifold, there is some
neighbourhood W of p and smooth function G : W → R with regular value 0 such

that W ∩ S = G−1(0); moreover, we have that ∇G(p) ‖ ~N (p), i.e., dG(p) = ~u⊥ for

some ~u ‖ ~N (p).
– It follows that the function H : U → R2 given by H(~x ) = (F (~x ), G(~x )) satisfies
H−1(0) = S ∩ P ∩W , and dH(p) has linearly independent (in fact, orthogonal) rows

~n> and ~u>, and hence has p as a regular point.
– It then follows that 0 is a regular value of the restriction of H to some small neigh-

bourhood U ⊂W of p, and hence by the inverse function theorem, C = H−1(0)∩U =
P ∩ S ∩ U is a 1-manifold as claimed.

– We can thus find a parametrization C near p by a unit-speed curve γ : (ε, ε) → R3

with γ(0) = p.
– The smooth curve γ is called the normal section of S at p.
– By definition, it lies entirely inside the plane P , and hence γ′′ lies inside P as well.

Since γ′′(0) ⊥ γ′(0), it follows that γ′′ ‖ ~N (p), and hence that

κ(0) = |γ′′(0)| = 〈γ′′(0), ~N (p)〉 = |IIp(~v )|.
– We conclude that the absolute value of the normal curvature IIp(~v ) is the curvature

at p of the normal section in the direction ~v .
• Geodesics

– Let γ be a unit-speed curve on an oriented surface S with unit normal vector field ~N .

– We can decompose ~a = γ′′ as ~a = ~a ‖ + ~a⊥ with respect to ~N .
– We have already identified the second term in terms of the normal curvature ~a⊥ =

κn
~N .

– Since γ is unit-speed, ~a is orthogonal to both ~v and ~N , and hence is parallel to

R90~v ..= ~N × ~v , the “90 degree counter-clockwise rotation of γ′ with respect to the
chosen orientation”.

– We now set κg = 〈γ′′, R90~v 〉, so that we have ~a ‖ = κgR90(~v ) and hence

~a = κn · ~N + κg ·R90(~v ).

– The quantity κg is called the geodesic curvature of γ, and measure the bending of γ
relative to the surface.

– If S is a plane, then κg is just the signed curvature.
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– We see that κg = 0 if and only if γ′′ ‖ ~N ; note that whether this holds is independent
of orientation.

– Thus, in general, we define a geodesic on S to be a regular curve γ such that γ′′(t) is
orthogonal to S for all t.

– Hence, if γ is unit-speed, it is a geodesic if and only if κg = 0.
– In general, we have: every geodesic γ has constant speed. This follows immediately

from the fact that γ′ ⊥ γ′′.
– On a plane, the geodesics are precisely the lines with constant-speed parametrization.
– We now state two fundamental facts about geodesics without proof.
– Proposition 5.3: for each p ∈ S and each ~v ∈ TpS, there exists a geodesic γ~v : (a, b)→
S (where 0 ∈ (a, b)) with γ~v (0) = p and γ′~v (0) = ~v .

Moreover, it is unique in the sense that for any other geodesic γ̂~v : (â, b̂) → S with

these properties, γ~v and γ̂~v agree on their common domain (a, b) ∩ (â, b̂).
– Note that, while we can sometimes choose the domain (a, b) to be all of R (for example,

when S is a plane), this isn’t always the case.
For example, if S is the puncture xy-plane S = {(x, y, z) ∈ R3 | z = 0 and (x, y) 6= (0, 0)},
and we take p = (−1, 0, 0) and ~v = (1, 0, 0), then the maximal domain of γ~v is (−∞, 1).

– This proposition is important because it allows us identify all the geodesics on a given
surface.

– For example, every geodesic on S2 is (a part of) a great circle γ(t) = cos(at)~u +
sin(at)~v , where ~u ,~v ∈ S2 are orthogonal.
Indeed, the great circles are clearly geodesic (since γ′(t) = −a sin(at)~u + a cos(at)~v ⊥
γ(t) = ~N (γ(t))), hence for any p ∈ S2 and ~v ∈ TpS, the unique geodesic γ~v through
p with γ′~v (0) = ~v must be the great circle γ~v (t) = cos(at)p + sin(at)~v .

– By a similar argument, we can see that every geodesic on the cylinder C = {(x, y, z) ∈ R3 | x2 + y2 = 1}
is a helix γ(t) = (cos t, sin t, ct).

– Next, Corollary 5.23: a curve γ is a geodesic if and only if it is locally length-minimizing.
This means that for any t0 in the domain of γ, there is some ε > 0 such that for any
t1, t2 ∈ (t0 − ε, t0 + ε), if we set p = γ(t1) and q = γ(t2), then γ|[t1,t2] is the shortest

path on S from p to q, i.e., any other curve α : [a, b]→ S from p to q on S has greater
arc-length than γ|[t1,t2]:∫ b

a

|α′(t)|dt ≥
∫ t2

t1

|γ(t)|dt = |γ′|(t2 − t1)

where for the last equation, we are using that γ has constant speed.
– In particular this tells us immediately that (Corollary 5.24): geodesics are intrinsic.
– This gives us a second proof that the helices are the geodesics on the cylinder, since

we know what the geodesics in the plane are.
• Gauss-Bonnet

– We finish our exploration of surfaces (though there is much more we are not covering
– just look at some of the other sections in Tapp’s book!) with the spectacular Gauss-
Bonnet theorem (which we will discuss, but not prove).
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