April 24, 2024

Reference: Tapp, pp. Chapters 4 and 5

Topics:

- Second fundamental form in local coordinates
 - As with the first fundamental form, we can also represent the second fundamental form in local coordinates.
 - That is, given a surface patch $\sigma: U \xrightarrow{\sim} V \subset S$, we can consider the function $(\mathcal{F}_2)_{\mathbf{q}}: \mathbb{R}^2 = \mathrm{T}_{\mathbf{q}}U \to \mathbb{R}$ given by $(\mathcal{F}_2)_{\mathbf{q}}(\vec{v}) = \mathrm{II}_{\mathbf{p}}(\mathrm{d}\sigma_{\mathbf{q}}(\vec{v})).$
 - As before, we can write this in the form

$$\mathcal{F}_2 = e \,\mathrm{d}u^2 + 2f \,\mathrm{d}u \,\mathrm{d}v + g \,\mathrm{d}v^2$$

where now $e = II(\sigma_u)$, $f = \mathcal{W}(\sigma_u, \sigma_v)$, and $g = II(\sigma_v)$.

– We then obtain such formulas as

$$K = \frac{eg - f^2}{EG - F^2} \qquad H = \frac{eG - 2fF + gE}{EG - F^2} \qquad \{k_1, k_2\} = \{H - \sqrt{H^2 - K}, H + \sqrt{H^2 - K}\}.$$

- Total Gaussian curvature
 - Given a plane curve $\gamma: [a, b] \to \mathbb{R}$, its total signed curvature $\int_a^b \kappa_s dt$ can be interpreted as the signed length of the curve $\vec{t}: [a, b] \to S^1$, where by "signed" length we mean $\int_{[a,b]} \vec{t}^* dV$, where dV is the volume form on the circle (with its standard orientation).
 - Indeed, the oriented unit tangent vector at $\vec{v} \in S^1$ is precisely $R_{90}\vec{v}$, and hence

$$\vec{t}^{*} \mathrm{d}V(\vec{e}_{1}) = \mathrm{d}V(\vec{t}') = \langle \vec{t}', R_{90}\vec{t} \rangle = \kappa_{\mathrm{s}} = \kappa_{\mathrm{s}} \,\mathrm{d}t(\vec{e}_{1}).$$

- The total signed curvature $\int_S K \, dV_S$ of a surface can be given a similar interpretation, namely as the signed area $\int_S \vec{N}^* \, dV_{S^2}$ of the Gauss map $\vec{N} : S \to S^2$.
- (In fact, this was Gauss' original definition of K: as the "infinitesimal signed area of the Gauss map".)
- In other words, the claim is that $\vec{N}^* dV_{S^2} = K dV_S$. To prove this, let $\vec{u}, \vec{v} \in T_{\mathbf{p}}S$ be an orthonormal basis of tangent vector at some point so that $dV_S(\vec{u}, \vec{v}) = 1$ by definition of dV and $\vec{u} \times \vec{v} = \vec{N}(\mathbf{p})$ by definition of \vec{N} .
- Let us write $-d\vec{N}_{\mathbf{p}}(\vec{u}) = a\vec{u} + b\vec{v}$ and $-d\vec{N}_{\mathbf{p}}(\vec{v}) = c\vec{u} + d\vec{v}$. Then, by definition, $K(\mathbf{p}) = \det(\mathcal{W}_{\mathbf{p}}) = \det(-d\vec{N}_{\mathbf{p}}) = \det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc.$
- On the other hand,

$$(\vec{N}^{*} dV_{S^{2}})(\vec{u}, \vec{v}) = dV_{S^{2}}(d\vec{N}_{\mathbf{p}}(\vec{u}), d\vec{N}_{\mathbf{p}}(\vec{v}))$$
$$= \langle d\vec{N}_{\mathbf{p}}(\vec{u}) \times d\vec{N}_{\mathbf{p}}(\vec{v}), \vec{N}(\mathbf{p}) \rangle$$
$$= \langle (a\vec{u} + b\vec{v}) \times (c\vec{u} + d\vec{v}), \vec{N}(\mathbf{p}) \rangle$$
$$= \langle (ad - bc)\vec{N}(\mathbf{p}), \vec{N}(\mathbf{p}) \rangle$$
$$= ad - bc$$
$$= K(\mathbf{p}) dV_{S}(\vec{u}, \vec{v})$$

- as desired.
- Normal sections
 - Recall that we defined the normal curvature $II_{\mathbf{p}}(\vec{v})$ of an oriented surface S at a point \mathbf{p} in the direction \vec{v} to be the normal curvature $\langle \vec{N}(\mathbf{p}), \gamma''(t_0) \rangle$ of any unit-speed curve γ on S with $\gamma'(t_0) = \vec{v}$.
 - However, one can also define them in terms of certain canonically defined curves called normal sections.
 - We consider the plane P through **p** parallel to $\vec{N}(\mathbf{p})$ and \vec{v} , i.e., with normal vector $\vec{n} = \vec{N}(\mathbf{p}) \times \vec{v}$.
 - We now intersect P with S, and we claim that there is some small open set $U \subset \mathbb{R}^3$ containing **p** such that the intersection $S \cap P \cap U$ is a smooth curve, i.e., a smooth 1-manifold.
 - Indeed, P is the zero-set of the function $F(\vec{x}) = \langle \vec{x} \mathbf{p}, \vec{n} \rangle$ with derivative $dF(\mathbf{p}) = \vec{n}^{\top}$ (i.e., with gradient $\nabla F(\mathbf{p}) = \vec{n}$). And since S it is a 2-manifold, there is some neighbourhood W of \mathbf{p} and smooth function $G: W \to \mathbb{R}$ with regular value 0 such that $W \cap S = G^{-1}(0)$; moreover, we have that $\nabla G(\mathbf{p}) \parallel \vec{N}(\mathbf{p})$, i.e., $dG(\mathbf{p}) = \vec{u}^{\perp}$ for some $\vec{u} \parallel \vec{N}(\mathbf{p})$.
 - It follows that the function $H: U \to \mathbb{R}^2$ given by $H(\vec{x}) = (F(\vec{x}), G(\vec{x}))$ satisfies $H^{-1}(0) = S \cap P \cap W$, and $dH(\mathbf{p})$ has linearly independent (in fact, orthogonal) rows \vec{n}^{\top} and \vec{u}^{\top} , and hence has \mathbf{p} as a regular point.
 - It then follows that 0 is a regular value of the restriction of H to some small neighbourhood $U \subset W$ of \mathbf{p} , and hence by the inverse function theorem, $C = H^{-1}(0) \cap U = P \cap S \cap U$ is a 1-manifold as claimed.
 - We can thus find a parametrization C near **p** by a unit-speed curve $\gamma : (\varepsilon, \varepsilon) \to \mathbb{R}^3$ with $\gamma(0) = \mathbf{p}$.
 - The smooth curve γ is called the *normal section* of S at **p**.
 - By definition, it lies entirely inside the plane P, and hence γ'' lies inside P as well. Since $\gamma''(0) \perp \gamma'(0)$, it follows that $\gamma'' \parallel \vec{N}(\mathbf{p})$, and hence that

$$\kappa(0) = |\gamma''(0)| = \langle \gamma''(0), \vec{N}(\mathbf{p}) \rangle = |\mathrm{II}_{\mathbf{p}}(\vec{v})|.$$

- We conclude that the absolute value of the normal curvature $II_{\mathbf{p}}(\vec{v})$ is the curvature at \mathbf{p} of the normal section in the direction \vec{v} .
- Geodesics
 - Let γ be a unit-speed curve on an oriented surface S with unit normal vector field \vec{N} .
 - We can decompose $\vec{a} = \gamma''$ as $\vec{a} = \vec{a}^{\parallel} + \vec{a}^{\perp}$ with respect to \vec{N} .
 - We have already identified the second term in terms of the normal curvature $\vec{a}^{\perp} = \kappa_n \vec{N}$.
 - Since γ is unit-speed, \vec{a} is orthogonal to both \vec{v} and \vec{N} , and hence is parallel to $R_{90}\vec{v} := \vec{N} \times \vec{v}$, the "90 degree counter-clockwise rotation of γ' with respect to the chosen orientation".
 - We now set $\kappa_{\rm g} = \langle \gamma'', R_{90} \vec{v} \rangle$, so that we have $\vec{a}^{\parallel} = \kappa_{\rm g} R_{90}(\vec{v})$ and hence

$$ec{a} = \kappa_{
m n} \cdot N + \kappa_{
m g} \cdot R_{90}(ec{v}).$$

- The quantity $\kappa_{\rm g}$ is called the *geodesic curvature* of γ , and measure the bending of γ relative to the surface.
- If S is a plane, then $\kappa_{\rm g}$ is just the signed curvature.

- We see that $\kappa_{\rm g} = 0$ if and only if $\gamma'' \parallel \vec{N}$; note that whether this holds is independent of orientation.
- Thus, in general, we define a *geodesic* on S to be a regular curve γ such that $\gamma''(t)$ is orthogonal to S for all t.
- Hence, if γ is unit-speed, it is a geodesic if and only if $\kappa_{g} = 0$.
- In general, we have: every geodesic γ has constant speed. This follows immediately from the fact that $\gamma' \perp \gamma''$.
- On a plane, the geodesics are precisely the lines with constant-speed parametrization.
- We now state two fundamental facts about geodesics without proof.
- Proposition 5.3: for each $\mathbf{p} \in S$ and each $\vec{v} \in T_{\mathbf{p}}S$, there exists a geodesic $\gamma_{\vec{v}} : (a, b) \to S$ (where $0 \in (a, b)$) with $\gamma_{\vec{v}}(0) = \mathbf{p}$ and $\gamma'_{\vec{v}}(0) = \vec{v}$. Moreover, it is unique in the sense that for any other geodesic $\hat{\gamma}_{\vec{v}} : (\hat{a}, \hat{b}) \to S$ with
- these properties, $\gamma_{\vec{v}}$ and $\hat{\gamma}_{\vec{v}}$ agree on their common domain $(a, b) \cap (\hat{a}, \hat{b})$.
- Note that, while we can sometimes choose the domain (a, b) to be all of \mathbb{R} (for example, when S is a plane), this isn't always the case. For example, if S is the puncture xy-plane $S = \{(x, y, z) \in \mathbb{R}^3 \mid z = 0 \text{ and } (x, y) \neq (0, 0)\}$, and we take $\mathbf{p} = (-1, 0, 0)$ and $\vec{v} = (1, 0, 0)$, then the maximal domain of $\gamma_{\vec{v}}$ is $(-\infty, 1)$.
- This proposition is important because it allows us identify all the geodesics on a given surface.
- For example, every geodesic on S² is (a part of) a great circle $\gamma(t) = \cos(at)\vec{u} + \sin(at)\vec{v}$, where $\vec{u}, \vec{v} \in S^2$ are orthogonal.
 - Indeed, the great circles are clearly geodesic (since $\gamma'(t) = -a \sin(at)\vec{u} + a\cos(at)\vec{v} \perp \gamma(t) = \vec{N}(\gamma(t))$), hence for any $\mathbf{p} \in \mathbf{S}^2$ and $\vec{v} \in \mathbf{T}_{\mathbf{p}}S$, the unique geodesic $\gamma_{\vec{v}}$ through \mathbf{p} with $\gamma'_{\vec{v}}(0) = \vec{v}$ must be the great circle $\gamma_{\vec{v}}(t) = \cos(at)\mathbf{p} + \sin(at)\vec{v}$.
- By a similar argument, we can see that every geodesic on the cylinder $C = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = 1\}$ is a helix $\gamma(t) = (\cos t, \sin t, ct)$.
- Next, Corollary 5.23: a curve γ is a geodesic if and only if it is *locally length-minimizing*. This means that for any t_0 in the domain of γ , there is some $\varepsilon > 0$ such that for any $t_1, t_2 \in (t_0 - \varepsilon, t_0 + \varepsilon)$, if we set $\mathbf{p} = \gamma(t_1)$ and $\mathbf{q} = \gamma(t_2)$, then $\gamma|_{[t_1, t_2]}$ is the shortest path on S from \mathbf{p} to \mathbf{q} , i.e., any other curve $\alpha \colon [a, b] \to S$ from \mathbf{p} to \mathbf{q} on S has greater arc-length than $\gamma|_{[t_1, t_2]}$:

$$\int_{a}^{b} |\alpha'(t)| \, \mathrm{d}t \ge \int_{t_1}^{t_2} |\gamma(t)| \, \mathrm{d}t = |\gamma'|(t_2 - t_1)$$

where for the last equation, we are using that γ has constant speed.

- In particular this tells us immediately that (Corollary 5.24): geodesics are intrinsic.
- This gives us a second proof that the helices are the geodesics on the cylinder, since we know what the geodesics in the plane are.
- Gauss-Bonnet
 - We finish our exploration of surfaces (though there is much more we are not covering
 – just look at some of the other sections in Tapp's book!) with the spectacular Gauss Bonnet theorem (which we will discuss, but not prove).