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MATH 440 NOTES

1. Set theory

Axiom 1 (“extensionality”). Two sets A and B are equal if and only if: for any thing x, x is
contained in A if and only if x is contained in B. In symbols:

A “ B ðñ @x px P A ðñ x P Bq.

Axiom 2 (“unrestricted comprehension”). For any property P , there exists a (by extensionality
unique) set A – called the extension of P – such that for any thing x, x is an element of A if and
only if x has the property P .

In symbols: if φpxq is a formula stating that x has some property, then

DA @x px P A ðñ φpxqq.

The usual notation for the set of all x satisfying φpxq is

tx | φpxqu.

Thus:
@a pa P tx | φpxqu ðñ φpaqq.

1.1. Some basic notions.

Definition 1.1.1.

‚ A Ă B or B Ą A means @x px P Añ x P Bq (“A is a subset of B”)
‚ A Ĺ B or B Ľ A means pA Ă B and A ‰ Bq (“A is a proper subset of B”)

(Theorem: pA Ă B and B Ă Aq ðñ A “ B)

‚ We write tau for the set just containing tau (i.e., tau “ tx | x “ au); a set of this form is
called a singleton. Similarly, ta, bu “ tx | x “ a or x “ bu, and ta, b, cu “ tx | x “ a or x “
b or x “ cu, and so on.

‚ We denote by H or tu the empty set, which is characterized by the property that a R H
for all things a. We can define it using the comprehension axiom as tx | x ‰ xu.

Given sets A and B,

‚ AYB denotes the set tx | x P A or x P Bu, the union of A and B

‚ AXB denotes the set tx | x P A and x P Bu, the intersection of A and B
‚ A´B or AzB denotes tx | x P A and x R Bu, the difference of A and B. If B Ă A, this is
also called the complement of B in A.

A and B are called disjoint if AXB “ H, i.e., if there are not things which belong to both A and
B.

Some set algebra:

Theorem 1.1.2. For any sets A,B,C:
“Associativity”:

‚ pAYBq Y C “ AY pB Y Cq
3
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‚ pAXBq X C “ AX pB X Cq

“Commutativity”:

‚ AYB “ B YA, AXB “ B XA

“Distributivity”:

‚ AY pB X Cq “ pAYBq X pAY Cq
‚ AX pB Y Cq “ pAXBq Y pAX Cq

“De Morgan’s laws”:

‚ A´ pB Y Cq “ pA´Bq X pA´ Cq
‚ A´ pB X Cq “ pA´Bq Y pA´ Cq

Properties of the empty set:

‚ AYH “ A, AXH “ H, A´H “ A

Properties of the “whole” set: if B Ă A, then

‚ AYB “ A, AXB “ B, A´ pA´Bq “ B

Definition 1.1.3. Given a set A, its power set PpAq is the set of all subsets of A: PpAq “ tB |

B Ă Au.

Definition 1.1.4. Given a set of sets A, (i.e., a set, each of whose elements is a set), its union,
denoted

Ť

A or
Ť

APA A, is the set
ď

A “ tx | DA pA P A and x P Aqu.

Note that it is typical to abbreviate “Dx px P X and φpxqq” as “Dx P X pφpxqq”. So the above
would be

ď

A “ tx | DA P A px P Aqu.

If A is not empty, then the intersection of A, denoted
Ş

A or
Ş

APA A is
č

A “ tx | @A pA P A ùñ x P Aqu “ tx | @A P A px P Aqu.

Here, we are using the standard abbreviation “@x P X pφpxqq” of “@x px P X ùñ φpxqq”.

1.2. Cartesian products.

Definition 1.2.1. Give any two things a and b, the ordered pair pa, bq of a and b is the set

pa, bq “ ttau, ta, buu.

Theorem 1.2.2. Given any things a, b, a1, b1, we have pa, bq “ pa1, b1q iff a “ a1 and b “ b1.

Definition 1.2.3. Given sets A and B, their cartesian product (or just product) is the set

AˆB “ tpa, bq | a P A and b P Bu.

The above notation is read “all things of the form pa, bq such that a P A and b P B”, and is an
abbreviation for

tx | There exist a and b such that x “ pa, bq and a P A and b P Bu.

Hence, by definition, we have that x P AˆB if and only if x “ pa, bq for some a P A and b P B.



MATH 440 NOTES 5

1.3. Functions and relations.

Definition 1.3.1.

‚ Given sets A and B, a binary relation (or just relation) between A and B is a subset
R Ă AˆB of the cartesian product AˆB.

Given a relation R Ă AˆB and elements a P A and b P B, we may sometimes write aRb
for pa, bq P R.

‚ A relation f Ă AˆB is a function (or mapping or map) if for each a P A there is a unique
b P B with pa, bq P f .

In symbols: @a P A D!b P B rpa, bq P f s. Here “D!” is read “there exists a unique”.
In this case, we say that f is a function from A to B or with domain A and codomain

B, and write f : AÑ B.
(Note that what we call “codomain” Munkres calls “range”. We use the word “range”

for something else (see below).

‚ Given a function f Ă A ˆ B and an element a P A, we write fpaq for the unique element
b P B satisfying pa, bq P f , and call it the image of a under f or the value of f at a.

‚ The range of f is the subset tfpaq | a P Au Ă B. Note that we are using the same notation
as in Definition 1.2.3 on page 4. I.e., it is short for tx | Da P Apx “ fpaqqu. In the future,
we will use this kind of notation without explaining it.

To define a function f : A Ñ B it suffices to specify, for each a P A, what the unique element
b P B is such that fpaq “ b. Thus, when we say “let f : R Ñ R be defined by fpxq “ x2”, we are
saying that f is the function

f “ tpx, x2q | x P Ru Ă Rˆ R.
‚ Given a function AÑ B and a subset A0 Ă A, the restriction of f to A0, denoted f |A0

is
the function f |A0

: A0 Ñ B defined by the rule pf |A0
qpxq “ fpxq for x P A0; i.e., it is the

function
f |A0

“ tpa, fpaqq | a P A0u Ă AˆB.

‚ Given functions f : A Ñ B and g : B Ñ C, the composite of f and g, denoted g ˝ f is the
function g ˝ f : AÑ C defined by the rule pg ˝ fqpaq “ gpfpaqq for a P A.

‚ For any set A, the identity function on A, denoted idA is the function idA

‚ A function f : A Ñ B is injective or one-to-one if fpaq “ fpa1q implies a “ a1 for any
a, a1 P A. The function f is surjective or onto if for each b P B there is an a P A such that
fpaq “ b, and f is bijective if it is both injective and surjective.

If f is injective, surjective, or bijective, we also say that it is an injection, surjection, or
bijection, respectively.

We often indicate that f is a bijection by writing f : A „
ÝÑ B, and similarly, we write

A – B to indicate that there exists a bijection A „
ÝÑ B.

‚ If f : AÑ B is a bijection, the inverse of f , denoted f´1, is the function f´1 : B Ñ A such
that f´1pbq is the unique element a P A such that fpaq “ b.

(Theorem: f´1 ˝ f “ idA and f ˝ f´1 “ idB .)
(The proof of this theorem uses an important:
Lemma: given functions F,G : X Ñ Y , we have F “ G if and only if F pxq “ Gpxq for all x P X.)
(Theorem: conversely, if there exists g : B Ñ A such that g ˝ f “ idA and f ˝ g “ idB , then f is a
bijection.)
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‚ Given a function f : AÑ B and a subset A0 Ă A, the image of A0 under f , denoted fpA0q,
is the subset tfpaq | a P A0u Ă B.

Given B0 Ă B, the pre-image of B0 under f is the subset ta P A | fpaq P B0u Ă A.
(Here, we have again introduced a variant of the set builder notation: given a set X

and a property φpxq which can be satisfied by elements of X, rather than writing tx | x P
X and φpxqu, we will often just write tx P X | φpxqu.)

WARNING 1.3.2. We are now using the notation f´1 for two different things; don’t get them
confused! Similarly, note the difference between fpaq for a P A and fpA0q for A0 Ă A.

1.4. Equivalence relations and quotients.

Definition 1.4.1. Given a set A, a binary relation (or just relation) on A is just a binary relation
between A and itself – i.e., a subset R Ă AˆA.

A relation R Ă AˆA on A is an equivalence relation if it satisfies the following for all x, y, z P A:

(i) (Reflexivity) xRx
(ii) (Symmetry) If xRy, then yRx.
(iii) (Transitivity) If xRy and yRz, then xRz.

It is common practice to use the symbol “„” to denote an equivalence relation.
Given an equivalence relation „Ă AˆA on A and an element of x, the „-equivalence class of x

(or just the equivalence class of x) is the set, often denoted by rxs„, or just rxs, defined by

rxs “ ty P A | y „ xu.

The quotient of A by „, denoted A{„, is the set of „-equivalence classes:

A{„ “ trxs | x P Au.

Given an equivalence class S Ă A{ „, any element x P S is called a representative of S. For any
representative s of S, we have S “ rss (why?).

Lemma 1.4.2. Given an equivalence relation on a set X, any two equivalence classes are disjoint
or equal.

Definition 1.4.3. Given a set A, a partition of A is a set D Ă PpAq of nonempty subsets of A
such that

(i) Any two distinct elements of D are disjoint
(ii)

Ť

D “ A

In other words: @a P A D!S P D pa P Sq.

Theorem 1.4.4. “Partitions are the same as equivalence relations.” More precisely:
For any equivalence relation „ on a set A, the set A{„ of equivalence classes forms a partition

of A.
Conversely, every partition D of A gives rise to an equivalence relation ED defined by xEDy iff

x, y P S for some S P D.
Finally, if ERpAq is the set of equivalence relations on A and PTpAq is the set of partition on A,

the functions

ERpAq PTpAq
F

G

defined by F pEq “ A{E and GpDq “ ED form a bijection, i.e., G “ F´1.
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1.5. Order relations.

Definition 1.5.1. A relation R Ă A ˆ A is a partial order if it satisfies the following for all
a, b, c P A:

(i) (“Reflexivity”) aRa
(ii) (“Transitivity”) aRb and bRc implies aRc
(iii) (“Anti-symmetry”) aRb and bRa implies a “ b

A set A together with a partial order R Ă A ˆ A is called a partially-ordered set or poset. It’s
common to denote an partial order by ďĂ AˆA, in which case we write a ă b for pa ď b and a ‰ bq.
We also say “a is less than b” for a ă b, and “a is less than or equal to b” (or “a is at most b”) for
a ď b. We also write b ě a for a ď b and b ą a for a ă b.

Definition 1.5.2. A partial order ďĂ A ˆ A is a total order or linear order if it additionally
satisfies: for any a, b P A, either a ď b or b ď a.

A set together with a total order is called a totally (or linearly) ordered set.

Remark 1.5.3. Note that one can instead axiomatize the relation “ă” associated to a partial order,
which is called a strict partial order : we simply replace (i) “reflexivity” with “anti-reflexivity”:
@a P A ␣paRaq (the symbol ␣ means “not”). (This is what Munkres does.) (And a “strict total
order” is then defined to be a strict partial order such that aRb or bRa for all a, b such that a ‰ b.)

Definition 1.5.4. Given a total order ď on A and a, b P A, we define the open, closed, and
half-open intervals between a and b, respectively as:

ra, bs
pa, bq
pa, bs
ra, bq

“

$

’

’

&

’

’

%

x P X

ˇ

ˇ

ˇ

ˇ

ˇ

a

ď

ă

ă

ď

x

ď

ă

ď

ă

b

,

/

/

.

/

/

-

and similarly, we write ra,8q for tx P X | x ě au and p´8, aq for tx P X | x ă au, and so on.

WARNING 1.5.5. We are now using pa, bq to denote both an ordered pair (which is defined for
any things a and b) as well as an open interval (which is also defined for a and b elements of a given
totally ordered set). It should always be clear from context which one is meant.

1.6. The natural numbers and “everything is a set”. Note that the following treatment of
the natural and real numbers is somewhat different from Munkres’.

Theorem 1.6.1 (“Dedekind-Peano axioms”). There exists a set N, an element 0 P N (which we call
“zero”), and a function S : NÑ N (which we call the “successor function”), satisfying the following
properties:

(i) Zero is not a successor; i.e., there is no n P N with Sn “ 0
(ii) The successor function is injective; i.e., given m,n P N with Sm “ Sn, then m “ n
(iii) (“The principle of mathematical induction”): given a subset M Ă N, if 0 PM and, for each

n PM , we have Sn PM , then M “ N. In symbols:

@M Ă N

˜

´

0 PM ^ @n P Npn PM ñ Sn PMq
¯

ñM “ N

¸

Property (iii) is typically employed as follows: we want to prove that every n P N has some
property P . We let M be the set of all n P N satisfying P . We then show that 0 satisfies P , and
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that if n satisfies P , so does Sn. It then follows from property (iii) that M “ N, and hence every
n satisfies P . This is called a “proof by induction”.

Definition 1.6.2. We call a triple pN, 0, Sq satisfying the conditions in the above theorem a
“Dedekind system”.

(We can define ordered triples as pa, b, cq :“ pa, pb, cqq; using Theorem 1.2.2, it is easy to prove
the fundamental property pa, b, cq “ pa1, b1, c1q iff pa “ a1 and b “ b1 and c “ c1q.)

Given a Dedekind system pN, 0, Sq, we usually write 1 for S0, and then 2 for S1 “ SpS0q, and
so on.

Theorem 1.6.3 (“Recursion theorem”). Let pN, 0, Sq be a Dedekind system and A a set. Given
an element a P A and a function g : AÑ A, there is a unique function f : NÑ A satisfying:

(i) fp0q “ a
(ii) fpSnq “ gpfpnqq for all n P N.
When we apply the recursion theorem to prove the existence of a function f , it is called “defining

f by recursion”. Here is an example:

Definition 1.6.4. Let pN, 0, Sq be a Dedekind system.
Fix some n P N. Let us apply the recursion theorem, where we take A “ N, a “ n, and g “ S.

Thus, the theorem says that there exists a unique function fn : N Ñ N satisfying fnp0q “ a “ n
and fnpSmq “ gpfnpmqq “ Spfnpmqq for each m P N.

(Normally, we would just say “we define the function fn : NÑ N by recursion (or recursively, or
by induction) by setting fnp0q “ 0 and fnpSmq “ Spfnpmqq for m P N”.)

We write n`m for fnpmq. Thus, we have by definition that n` 0 “ n and n`Sm “ Spn`mq.
Note that n` 1 “ Sn for any n P N, so we will often write n` 1 in place of Sn.

Definition 1.6.5. Again fix a Dedekind system pN, 0, Sq.
For each a P N, we define ma : NÑ N recursively by setting map0q “ 0 and mapb`1q “ mapbq`a

for b P N. We write a ¨ b (or just ab) for mapbq. (Thus, by definition, we have a ¨ 0 “ 0 and
a ¨ pb ` 1q “ a ¨ b ` a – where we employ the usual convention that the operation “¨” has higher
precedence than “`”.

Similarly, for each a P N ´ t0u, we define ea : N Ñ N recursively by setting eap0q “ 1 and
eapb` 1q “ eapbq ¨ a; and then define ab “ eapbq. We then have a0 “ 1 and ab`1 “ ab ¨ a.

Some basic properties (all of which are proven by induction):

Theorem 1.6.6. Again fix a Dedekind system pN, 0, Sq. For any a, b, c P N:
“Associativity”:

‚ pa` bq ` c “ a` pb` cq, pabqc “ apbcq

“Commutativity”:

‚ a` b “ b` a, ab “ ba

“Distributivity”:

‚ apb` cq “ ab` ac

“Exponential laws”:

‚ ab`c “ ab ¨ ac, ab¨c “ pabqc

Definition 1.6.7. Again fix a Dedekind system pN, 0, Sq. We define a total ordering ďĂ NˆN by
declaring that a ď b if and only if a` d “ b for some d P N.

(Theorem: This is a total ordering on N.)
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Theorem 1.6.8. Any two Dedekind systems are “isomorphic”:
Given any two Dedekind systems pN, 0, Sq and pN1, 01, S1q, there is a (in fact, unique) bijection

f : NÑ N1 such that fp0q “ 01 and fpSnq “ S1pfpnqq for all n P N.

We now turn to the construction of a Dedekind system.

Definition 1.6.9. A set X is inductive if H P X and whenever A P X for some set A, we have
AY tAu P X.

We define the set of von Neumann natural numbers, denoted ω, to be the smallest inductive set;
i.e., it is the set of all things contained in every inductive set:

tx | @X pif X is an inductive set then x P Xqu

We define a function Sω : ω Ñ ω by setting Sωpnq “ nY tnu.

The following is a more precise version of Theorem 1.6.1:

Theorem 1.6.10. pω,H, Sωq is a Dedekind system.

From now on, for definiteness, we no longer use pN, 0, Sq to denote an arbitrary Dedekind system,
but the particular one given by the von Neumann natural numbers; that is, we define N “ ω, 0 “ H
and S “ Sω. (However, in light of Theorem 1.6.8, it “doesn’t matter” which Dedekind system we
use, and therefore you should “forget” about the von Neumann natural numbers and just rely on
the Dedekind-Peano axioms.)

Remark 1.6.11. Emboldened by this success, we might be inclined to adopt the
Axiom: every thing is a set.
(One can also give a formal definition of “pure set” – i.e., a set all of whose elements are sets,

each of whose sets are also sets, “etc.” – and then go even further and adopt the axiom “every
thing is a pure set”; this is called the axiom of foundation.)

We could indeed adopt such an axiom, as it will continue to be the case that we do not need
anything but pure sets for doing all of mathematics – and indeed, people do often adopt this axiom
in certain contexts. However, for us, there is nothing really to gain from this axiom except a sense
of comfort. All the things we use will be pure sets anyway, and it doesn’t make a difference if we
declare that there aren’t any other things.

Definition 1.6.12. Some notation: we denote by N` or Z` or Ną0 or Zą0 the set Nzt0u. We may
also write Zě0 for N.

Given a, b P N with a ď b, we denote by ta, . . . , bu the set tn P N | a ď n ď bu. If a ą b, then
ta, . . . , bu “ H.

1.7. The real numbers.

Definition 1.7.1. A binary operation on a set X is a function f : X ˆ X Ñ X. Thus, for each
x, y P X, this gives us an element fpx, yq P X.

Often, we denote a binary function by a symbol such as “` : X ˆ X Ñ X”, in which case we
usually use “infix” notation and write x` y instead of `px, yq. Often, if the symbol happens to be
“¨”, we moreover just omit it and write xy instead of x ¨ y.

Definition 1.7.2. A field is a triple pF,`, ¨q, where F is a set and ` and ¨ are binary operations
on F (called “addition” and “multiplication”), satisfying:

(i) Both operations are commutative and associative, i.e., for any a, b, c P F :

a` b “ b` a, a ¨ b “ b ¨ a, pa` bq ` c “ a` pb` cq, pa ¨ bq ¨ c “ a ¨ pb ¨ cq
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(ii) There is a unique element 0 P K satisfying 0` a “ a for all a P A.
(iii) There is a unique element 1 P K satisfying 1 ¨ a “ a for all a P A.
(iv) For each a P K, there is a unique element of K, denoted ´a, such that a` p´aq “ 0.
(v) For each a P K ´ t0u, there is a unique element of K, denoted a´1, such that a ¨ a´1 “ 1.
(vi) Multiplication is distributive over addition; i.e., for each a, b, c P K, we have a ¨ pb ` cq “

a ¨ b` a ¨ c.
(vii) 1 ‰ 0

We write a´ b for a` p´bq, and a
b or a{b for a ¨ b´1.

Remark 1.7.3. This remark applies not just to fields, but to all of the many species of “structures”
one encounters in mathematics.

Given a field pF,`, ¨q, the set F is called the underlying set of the field. A typical “abuse of
notation” is to conflate the structure with its underlying set, and just use F , rather than pF,`, ¨q
to denote the field, trusting that the reader understands from context what the field operations are.

Definition 1.7.4. An ordered field pF,`, ¨,ďq is a field pF,`, ¨q together with a total ordering ď
such that, for any a, b, c P F :

(i) If a ă b, then a` c ă b` c.
(ii) If a ă b and c ą 0, then a ¨ c ă b ¨ c.

We say that a P F is positive if a ą 0 and negative if a ă 0.

Definition 1.7.5. Let pX,ďq be any totally ordered set. Given a subset S Ă X, we say that an
element b P X is an upper (or lower) bound of S if b ě s (or b ď s) for all s P S. If an upper or
lower bound b of S also belong to S, we call it the maximum (or minimum) of S.

We say that an upper bound b of S is a least upper bound (or l.u.b., or supremum) if for each
upper bound b1 of S, we have b ď b1. Similarly, a greatest lower bound (g.l.b. or infimum) of S is a
lower-bound b of S such that b ě b1 for all lower bounds b1 of S.

(Theorem: any two l.u.b.’s or g.u.b.’s of a set S are equal.)
A subset S Ă X is bounded above (or below) if it has an upper (or lower) bound, and bounded

if it is bounded both above and below.
Finally, we say that an ordered field pF,`, ¨,ďq is complete and Archimedean if each non-empty

subset S Ă F which is bounded above has a supremum.

Definition/Theorem 1.7.6. There exists a complete Archimedean ordered field pR,`, ¨,ďq, which
we call the field of real numbers.

The proof of this theorem, which we discussed in class, involves the construction of the field of
Dedekind cuts. Whenever we speak of the complete Archimedean ordered field pR,`, ¨,ďq, we will
be referring to the particular field of Dedekind cuts. However, as with the natural numbers, the
particular construction we used is “irrelevant”, in light of the following theorem (and therefore, you
should “forget” about the Dedekind cuts, and only rely on the axioms of a complete ordered field).

Theorem 1.7.7. Any two complete Archimedean ordered field are “isomorphic”:
Given any two complete Archimedean ordered field pR,`, ¨,ďq and pR1,`1, ¨1,ď1q, there is a (in

fact, unique) bijection f : R Ñ R1 such that for all a, b P R we have fpa ` bq “ fpaq ` fpbq and
fpa ¨ bq “ fpaq ¨ fpbq, and a ď b ðñ fpaq ď fpbq.

Definition 1.7.8. We define a function i : NÑ R by recursion by setting ip0q “ 0, and ipn` 1q “
ipnq ` 1. We call the image ipNq Ă R of i the set of natural real numbers.
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(Theorem: i is injective.)
Since i is injective, it induces a bijection N – ipNq, and we will usually not bother to distinguish

between a natural number and the corresponding natural real number.
We define the set of integers as Z “ ta ´ b | a, b P ipNqu and the set of rational numbers as

Q “ ta{b | a P Z and b P Zzt0uu.

1.8. Calamity.

Theorem 1.8.1. There exists a set X such that X P X and X R X.

This is obviously a problem and shows that there was something wrong with our axioms, and
hence we need to revise them. Specifically, we replace the Axiom of Unrestricted Comprehension
with a bunch of carefully selected special cases of it (collectively called the “Axiom of Restricted
Comprehension”), which suffice for all mathematical purposes, but which don’t allow you to do
crazy things like form the set of all sets.

We list these special cases here for the sake of completeness, but you should immediately “forget”
them and go back to using unrestricted comprehension. The point is that any particular case of
unrestricted comprehension you use in practice will be an instance of one of the following (or a
consequence of them).

Before, we proceed, a word on notation: the notation tx | φpxqu was used in light of the Axiom
of Unrestricted Comprehension to denote the set of all x satisfying φpxq. Since we are abandoning
this axiom, the notation tx | φpxqu is no longer valid in general.

However, for certain formulas φpxq, there will still be a (by Extensionality unique) set containing
just those things x satisfying φpxq. In this case, we will still use the notation tx | φpxqu to denote
that set.

Also, we will say “tx | φpxqu is a set” to mean that there is, indeed, a set containing exactly
those things x satisfying φpxq. We make similar conventions regarding the various notations we
introduced for denoting sets. For example, to interpret the first point “H is a set” in Axiom 21

below, we first expand the definition of H to obtain “tx | x ‰ xu is a set”, which therefore means
“there exists a (by Extensionality unique) set containing exactly those things x such that x ‰ x”.

Finally, we note that there is one more instance of restricted comprehension (called the “axiom of
replacement”) which is often included but which we are omitting, since it is somewhat complicated
to state, and in any case, is only needed for special set-theoretic purposes, and never needed in
ordinary mathematical practice.

Axiom 21 (“Restricted comprehension”).

(i) H is a set.
(ii) If a, b are any two things, then ta, bu is a set.
(iii) If A is any set, all of whose elements are sets, then

Ť

A is a set.
(iv) If A is any set, then PA is a set.
(v) If A is any set and P is any property, then

tx P A | x satisfies P u

is a set.
(vi) ω (the set of von Neumann natural numbers) is a set.

1.9. Indexed products, sequences, and disjoint unions. Here are a bunch more general set-
theoretic definitions.

Definition 1.9.1.
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‚ We introduce an alternative notation for functions. Given a set J and, for each element
α P J , an element xα of some set X, we may denote by

txαuαPJ or pxαqαPJ

the function J Ñ X whose value at α P J is xα. In this case, we will often refer to the
function txαuαPJ as an indexed family of elements of X (or just an indexed family), and
refer to J as the corresponding indexing set.

‚ An infinite sequence (or just sequence) of elements of X is just a family txnunPN of elements
of X with indexing set N (i.e., a function N Ñ X). We often denote an infinite sequence
txnunPN by txnu

8
n“0, or by

px0, x1, x2, . . .q

when the expression for the general xn can be inferred from the first few instances. Some-
times, we may even just denote this sequence by pxnq or even xn.

‚ Given n P N, an n-tuple or finite sequence of length n of elements of X is just an indexed
family txiuiPJ of elements of X in which J “ t1, . . . , nu for some n P N`.

We often denote a tuple txiuiPJ by txiu
n
i“1, or by px1, . . . , xnq.

Note that for n “ 2 or n “ 3, this conflicts with our earlier notation pa, bq or pa, b, cq for
ordered pairs and triples, but this is justified in light of the obvious bijection between the
set of ordered pairs/triples and the set of 2-tuples/3-tuples.

‚ An indexed family of sets is just an indexed family tAαuαPJ in which each Aα is itself a set.

‚ Given an indexed family of sets tAαuαPJ , the union
Ť

αPJ Aα and intersection
Ş

αPJ Aα of
this family are the sets

ď

αPJ

Aα “
ď

tAα | α P Ju and
č

αPJ

Aα “
č

tAα | α P Ju.

‚ The indexed product
ś

xPα Aα of a family of sets tAαuαPJ is the set of all indexed families
pxαqαPJ of elements of

Ť

αPJ Aα such that xα P Aα for all α:
ź

αPJ

Aα “ tf : J Ñ
ď

αPJ

Aα | fpαq P Aα for all α P Ju.

If J “ t1, . . . , nu for some n P N`, we may also write A1 ˆ ¨ ¨ ¨ ˆAn for
śn

i“1 Ai. Again,
when n “ 2, this conflicts with our old definition for the product A ˆ B, but there is a
canonical bijection between AˆB in the old sense and AˆB in the new sense.

‚ If tAαuαPJ is a constant family – i.e., there is some set A such that Aα “ A for all α – then
we may simply write AJ rather than

ś

αPJ A. Note that this is just the set of functions
from J to A.

If, moreover, J “ t1, . . . , nu for some n P N`, we may write An for AJ .

‚ The disjoint union
š

αPJ Aα of a family of sets tAαuαPJ is the set of all pairs pα, xq where
α P J and x P Aα:

ž

αPJ

Aα “ tpα, xq | α P J and x P Aαu “
ď

αPJ

tαu ˆAα.

Again, if J “ t1, . . . , nu, we may write A1 \ ¨ ¨ ¨ \ An for
šn

i“1 Ai. In particular, we have
A\B “ t1u ˆAY t2u ˆB.
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1.10. Finite and countable sets, and cardinality.

Definition 1.10.1. A set A is finite if it is empty or there exists a bijection t1, . . . , nu „
ÝÑ A for

some positive n P N. In the former case, we say that A has cardinality 0, and otherwise that A has
cardinality n.

If a set is not finite, it is infinite.

Theorem 1.10.2. Given m,n P N, if a set A has cardinality m and also has cardinality n, then
m “ n.

Definition 1.10.3. In light of the previous theorem, given a finite set A, there is a unique n such
that the A has cardinality n. This n is called the cardinality of A, denoted #A.

Theorem 1.10.4. If A is finite and B Ĺ A, then B is finite and #B ă #A.

Theorem 1.10.5. N is infinite. More generally, for any set A, if there exists a bijection between
A and a proper subset of A, then A is infinite.

Definition 1.10.6. A set A is countably infinite if there exists a bijection N „
ÝÑ A. It is countable

if it is finite or countably infinite.
Warning: sometimes “countable” is simply used to mean “countably infinite”.
If A is not countable, it is uncountable.

Definition 1.10.7. For any two sets A and B, we say that A and B are equipotent or have the
same cardinality, and write |A| “ |B|, if A – B (i.e., if there exists a bijection between A and B).

We say that the cardinality of A is less than or equal to the cardinality of B, and write |A| À |B|,
if there exists an injection AÑ B.

Theorem 1.10.8 (Cantor-Schröder-Bernstein). If |A| ď |B| and |B| ď |A|, then |A| “ |B|.

Theorem 1.10.9 (Cantor). For every set A, we have |A| ă |PpAq|. Also, |R| “ |PpNq| (hence R
is uncountable).

Theorem 1.10.10. Let tAαuαPJ be an indexed family of countable sets with J finite. Then
Ť

αPJ Aα and
ś

αPJ Aα are also countable.

1.11. The axiom of choice.

Axiom 3 (Axiom of Choice). Given any set A of non-empty sets, there exists a function c : A Ñ
Ť

A with the property that cpAq P A for all A P A.
Such a function c is called a choice function for A.

Theorem 1.11.1. Any surjective function f : AÑ B has a right-inverse (i.e., there exists a function
g : B Ñ A with f ˝ g “ idA).

Theorem 1.11.2. Let A be a set. The following statements are equivalent:

(i) There exists an injection NÑ A.
(ii) There exists a bijection between A and a proper subset of A.
(iii) A is infinite

Theorem 1.11.3. Let tAαuαPJ be an indexed family of countable sets with J countable. Then
Ť

αPJ Aα is also countable.
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2. Metric spaces

Definition 2.0.1. A metric d on a set X is function d : X ˆX Ñ R satisfying, for all x, y, z P X:

(i) (“Positivity”) dpx, yq ě 0; and dpx, yq “ 0 ðñ x “ y
(ii) (“Symmetry”) dpx, yq “ dpy, xq
(iii) (“Triangle inequality”) dpx, zq ď dpx, yq ` dpy, zq
A metric space is a pair pX, dq with X a set and d a metric on X. As mentioned in Remark 1.7.3,

we will often conflate a metric space pX, dq with its underlying set X. Also, If we are considering a
metric space with underlying set X and haven’t given a name to the metric, we may just refer to
it as dX , or even just d.

We often call the elements of a metric space pX, dq the points of X.

Definition 2.0.2. Fix any n P N`.
Given x,y P Rn and a P R, we denote by x` y, x´ y, and ax the usual component-wise sum,

difference, and scalar multiple.
We denote by ∥x∥ the number1

a

řn
i“1 x

2
i , called the (Euclidean) norm or length of x. Note

that ∥x∥ ě 0.
Finally, we define dpx,yq “ ∥x´ y∥, which we call the (Euclidean) distance between x and y.

Definition/Theorem 2.0.3. d as defined above is a metric on Rn, called the Euclidean metric on
Rn.

Definition 2.0.4. If pX, dq is a metric space and A Ă X is a subset, then the restriction d|AˆA is
called the induced metric or subspace metric on A.

(Theorem: it is a metric.)

Definition/Theorem 2.0.5. For any n P N`, the function dTc : Rn ˆ Rn Ñ Rn defined by
dTcpx,yq “

řn
i“1|xi ´ yi| is a metric on Rn, called the taxicab metric.

Definition/Theorem 2.0.6. For any set X, the function d : X ˆX Ñ R defined by

dpx, yq “

#

1 if x ‰ y

0 if x “ y

is a metric on X, called the discrete metric.

Definition/Theorem 2.0.7. Given metric spaces pX1, d1q and pX2, d2q, the function d : pX1 ˆ

X2q ˆ pX1 ˆ X2q Ñ R defined by d
`

px1, x2q, py2, y2q
˘

“ d1px1, y1q ` d2px2, y2q is a metric, called
the standard product metric.

2.1. Open and closed sets. Let pX, dq be a metric space until further notice.

Definition 2.1.1. Given a point x P X and a real number r ě 0, we define the open ball of radius
r at x to be the subset Brpxq “ ty P X | dpx, yq ă ru, and the closed ball of radius r at x to be the

subset Brpxq “ tx P X | dpr, xq ď ru. Note that B0pxq “ H and B0pxq “ txu.

1We have not formally introduced the summation notation; it is defined by an obvious recursion: for each n P N`,

we define a function
řn

i“1 : Rn Ñ R recursively in n by setting
ř1

i“1 ai “ ai and
řn`1

i“1 ai “
řn

i“1 ai ` an.

One proves various familiar properties of the sum by induction, such as “distributivity” a
řn

i“1 bi “
řn

i“1 abi. In the
future, we will simply assume such familiar properties without further discussion.

The square root
?
x of a non-negative real number x was defined in the homework. It is the unique y P Rě0 with

y2 “ x. Also note that
řn

i“1 x
2
i is positive, being a sum of squares.
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When we need to emphasize the dependence of Brpxq and Brpxq on the metric d, we may write
Brpx; dq and Brpx; dq.

A subset U Ă X is open if for each x P U there is some r ą 0 with Brpxq Ă U . A subset is closed
if its complement is open.

If U Ă X is open and contains x P X, we say that U is an open neighborhood of X.

Theorem 2.1.2.

(i) X and H are open.
(ii) If U Ă PpXq is any set of open sets, then

Ť

U is open.
(iii) If U Ă PpXq is any (non-empty) finite set of open sets, then

Ş

U is open.

Remark 2.1.3. Here is an extremely trivial remark:
The reason that we require U to be non-empty in (iii) is that we only defined the intersection

Ş

A when A is non-empty.
However, when A Ă PpY q is a set of subsets of some given set Y (as is the case here), it is

natural to define
Ş

A as
č

A “ ty P Y | y P A for all A P Au
rather than

č

A “ ty | y P A for all A P Au.
This new definition gives the exact same result whenever A ‰ H, but when A “ H, it gives
Ş

H “ Y .
Hence, if we take this new definition, then we do not need to demand “non-empty” in (iii).

Theorem 2.1.4. For any x P X and r ě 0, the open ball Brpxq is open and the closed ball Brpxq
is closed.

2.2. Continuous maps and homeomorphisms. Let pX, dXq and pY, dY q be metric spaces.

Definition 2.2.1. Let f : X Ñ Y be a function. Given x P X, the function f is continuous at x
if for every ε ą 0, there exists δ ą 0 such that dXpx, x

1q ă δ ñ dY pfpxq, fpx
1qq ă ε for all x1 P X

(or, in other words, fpBδpxqq Ă Bεpfpxqq). The function f is continuous if it is continuous at x for
every x P X.

The function f is a homeomorphism if it is continuous and bijective, and its inverse f´1 : Y Ñ X
is also continuous.

In this case, we say that pX, dXq and pY, dY q are homeomorphic.

Theorem 2.2.2. A function f : X Ñ Y is continuous if and only if, for each open U Ă Y , the
preimage f´1pUq is open in X.

3. Topological spaces

Definition 3.0.1. A topology on a set X is a set T Ă PpXq of subsets of X satisfying the following:

(i) X and H are in T
(ii) If U Ă T is any subset of T , then

Ť

U P T .
(iii) If U Ă T is any (non-empty) finite subset of ⊔, then

Ş

U P T . (Equivalently (by induction),
whenever U, V P T , then U X V P T .)

We call the elements of T the open subsets of X, and we call a subset closed if its complement is
open.

A topological space (or just space) is a pair pX, T q with X a set and T a topology on X.
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(As usual – see Remark 1.7.3 and Definition 2.0.1 – we may sometimes use X to refer to the
topological space pX, T q. Also, if we are considering a topological space with underlying X and
have not given a name to the topology, we must just refer to it as TX , or even just T .)

Definition/Theorem 3.0.2. If pX, dq is a metric space, then the set T of all open subsets of X
is a topology, called the metric topology on pX, dq.

A topological space pX, T q is metrizable if T is the metric topology for some metric d on X.

Definition 3.0.3. Given a set X, the set of all subsets of X is called the discrete topology, and
the set tH, Xu Ă X is called the indiscrete topology.

(Theorem: These are indeed both topologies.)

Definition 3.0.4. Let T , T 1 Ă PpXq be topologies on a set X. If T Ă T 1, we say that T 1 is finer
than T and that T is coarser than T 1

(We might also simply say – in light of “Ă” being a partial order on PpXq – that T is smaller
than T 1.)

Thus, for example, the discrete and indiscrete topologies are respectively the finest and coarsest
topologies on X.

Definition 3.0.5. Let pX, TXq and pT, TY q be topological spaces.
A map f : X Ñ Y is continuous if for each open U P TY , we have f´1pUq P TX .
We say that f is a homeomorphism or isomorphism of topological spaces, and write f : X „

ÝÑ Y
if f is continuous and bijective, and its inverse f´1 : Y Ñ X is also continuous.

In this case, we say that pX, TXq and pY, TY q are homeomorphic and write pX, TXq – pY, TY q (or
just X – Y ).

(Theorem: f is continuous only if f´1pV q Ă X is closed for every closed subset V Ă Y .)

Definition/Theorem 3.0.6. Let pX, T q be a topological space and A Ă X a subset. Then the
set

TA “ tU XA | U P T u “ tU | U “ V XA for some V P T u Ă PpAq
is a topology on A, called the subspace topology.

A subspace of pX, T q is a topological space given by some subset A Ă X endowed with subspace
topology.

Definition 3.0.7. Given a subset A Ă X of a topological space X, we say that a subset S Ă A is
open in A if it is open in the subspace topology on A (i.e., if U “ A X V for some open V Ă X),
and closed in A if it is closed in the subspace topology on A (i.e., if A´ S is open in A).

Theorem 3.0.8. If A Ă X is an open subset of a topological space X, then a subset S Ă A is
open in X if and only if it is open in X. If A is closed, then S Ă A is closed in A if and only if it
is closed in X.

Theorem 3.0.9. Let X be a metric space and A Ă X a subset. Then the subspace topology on
A induced by the metric topology on X is the same as the metric topology on A coming from the
subspace metric on A Ă X.

Remark 3.0.10. Note that in the above theorem, we just wrote “Let X be a metric space” rather
than “Let pX, dq be a metric space”, since we didn’t need to make any explicit reference to the
metric d in the theorem. This is in accordance with Remark 1.7.3, and we will continue to do this
when it is convenient.
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3.1. Bases and subbases, the product topology, and continuity at a point.

Definition 3.1.1. Given a topological space pX, T q, we say that a set B Ă PpT q is a basis for T
if every open subset U P T is a union of elements of B – or equivalently, for each open U Ă X and
each x P U , there is some B P B with x P B Ă U .

(Theorem: For a metric space pX, dq, the open balls are a basis for the metric topology.)
When we have fixed a basis B, we call the elements U P B basic open sets.

Definition/Theorem 3.1.2. Let X be a set and B Ă PpXq be a collection of subsets. Then B is
a basis for some topology on X if and only if:

(i) Each x P X is contained in some B P B. (Equivalently, X “
Ť

B.)
(ii) If B1, B2 P B and x P B1XB2, then there is some B3 P B such that x P B3 and B3 Ă B1XB2.

(Equivalently, B1 XB2 is a union of elements of B.)
In this case, there is a unique topology T with basis B – called the topology generated by B – and
consists of all unions of elements of B (equivalently: a set U Ă X is in T if and only if for each
x P U , there is some B P B with x P B Ă U .)

Definition/Theorem 3.1.3. Given topological spaces X and Y , the set B Ă PpXˆY q of subsets
of X ˆ Y given by

B “ tU ˆ V | U is open in X and V is open in Yu

(satisfies the condition of Theorem 3.1.2 and hence) is the basis for a topology on X ˆ Y . This is
called the product topology.

Theorem 3.1.4. Let X and Y be metric spaces. Then the metric topology coming from the
standard product metric on X ˆ Y is the same as the product topology coming from the metric
topologies on X and Y .

Definition 3.1.5. Given topological spaces X and Y and a point x P X, we say that a func-
tion f : X Ñ Y is continuous at x if for each open neighborhood V Ă Y of y, there is an open
neighborhood U Ă X of x such that fpUq Ă V .

Theorem 3.1.6. Let f : X Ñ Y be a function between topological spaces X and Y .

(i) f is continuous if and only if it is continuous at x for each x P X.
(ii) Given bases B for X and B1 for Y , we have that f is continuous at x P X if and only if, for

each B1 P B1 containing y, there is some B P B containing x such that fpBq Ă B1.
(iii) In particular, if X and Y are metrizable, then f is continuous at x P X if and only if it

continuous at x in the sense of Definition 2.2.1.

Lemma 3.1.7. For any non-empty family tTαuαPJ of topologies on a set X, the intersection
Ş

αPJ Tα is also a topology.

Definition/Theorem 3.1.8. Given a topological space pX, T q, a subset B Ă T is a subbasis for
T if

Ť

B “ X, and T is the coarsest topology on X with B Ă T .
Given any set B Ă PpXq of subsets of a set X, there is a unique topology T for which B is a

subbasis, called the topology generated by B. It is the intersection of all topologies T 1 containing
B, and consists precisely of all unions of finite intersections of elements of B.

(Note that the set of all finite intersections of elements in B forms a basis for T .)

Definition 3.1.9. Given a product
ś

αPJ Xα of an indexed family tXαuαPJ of sets, the associated

product projections are the maps πβ :
ś

αPJ Xα Ñ Xβ for each β P J , defined by πβ

´

pxαqαPJ

¯

“

xβ .
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Definition 3.1.10. Let tXαuαPJ be an indexed family of topological spaces.
We defined the product topology on

ś

αPJ Xα to be the coarsest topology for which each product
projection πβ :

ś

αPJ Xα Ñ Xβ is continuous.
In other words, the product topology has as a subbasis all sets of the form

π´1
β pUq “ tpxαqαPJ | xβ P Uu

with β P J and U Ă Xβ open.
It has as a basis all sets of the form

tpxαqαPJ | xα1
P U1, . . . , xαn

P Unu

with α1, . . . , αn P J and Ui Ă Xαi
open for each i “ 1, . . . , n.

Remark 3.1.11. Note that in the case J “ t1, 2u, this definition specializes to the product topology
on X1 ˆX2, as defined in Definition 3.1.3.

Theorem 3.1.12. The metric topology on Rn “
śn

i“1 R agrees with the product topology (where
each factor R is given the metric topology).

3.2. Constructing continuous functions.

Theorem 3.2.1. Let X and Y be topological spaces, and let A Ă X and B Ă Y be subspaces.

(i) If f : X Ñ Y is continuous, then so is the restriction f |A : AÑ Y .
(ii) Given a function f : X Ñ Y with fpXq Ă B, then f is continuous if and only if the function

f : X Ñ B obtained by shrinking the codomain of f is continuous.

Theorem 3.2.2. The maps `, ¨ : R ˆ R Ñ R, the map ´ : R Ñ R, and the map ´1 : Rzt0u Ñ R
are continuous. Also,

?
: Rě0 Ñ R is continuous.

Here is a useful lemma in the proof:

Lemma 3.2.3. Let f : X Ñ Y be a map of metric spaces. If, for each x P X, there is a constant
C ą 0 such that dY pfpxq, fpx

1qq ď CdXpx, x
1q for all x1 P X, then f is continuous.

More generally, if for each x P X, there is some δ ą 0 and some C ą 0 such that dY pfpxq, fpx
1qq ď

CdXpx, x
1q for all x1 P Bδpxq, then f is continuous.

Theorem 3.2.4. Let X,Y, Z be topological spaces.

(i) If f : X Ñ Y is a constant function (i.e., there is some y0 P Y such that fpXq “ ty0u) then
f is continuous.

(ii) Given a subspace A Ă X, the inclusion function i : AÑ X (given by ipaq “ a) is continuous.
In particular, idX is continuous.

(iii) (“Topological spaces and continuous maps form a category”) idX is continuous, and if
f : X Ñ Y and g : Y Ñ Z are continuous, then so if g ˝ f : X Ñ Z.

Theorem 3.2.5. Let X be a topological space and let tYαuαPJ be a family of topological spaces.
A map f : X Ñ

ś

αPJ Yα into the product is continuous if and only if the composite πβ ˝f : X Ñ

Yβ of f with each projection map πβ :
ś

αPJ Yα Ñ Yβ is continuous.

Corollary 3.2.6.

‚ If X is a topological space and f, g : X Ñ R are continuous functions, then so is f`g : X Ñ

R defined by pf`gqpxq “ fpxq`gpxq and f ¨g defined similarly, and also f
g , which is defined

on the subset tx P X | gpxq ‰ 0u.
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‚ Any polynomial function p : RÑ R, i.e., one of the form ppxq “
řn

i“0 aix
i is continuous, as

is any rational function, i.e., one of the form fpxq “ ppxq

qpxq
, where p, q : RÑ R are polynomial

functions (and which is defined on the set tx P R | qpxq ‰ 0u is continuous.
‚ Similarly, polynomial functions in several variables, such as any function p : R2 Ñ R of the
form ppx, yq “

řn
i“0

řm
j“0 aijx

iyj , are continuous.

‚ The Euclidean norm ∥´∥ : Rn Ñ R is continuous.

Theorem 3.2.7. Let X and Y be topological spaces and let f : X Ñ Y be a map.

(i) (“Continuity is a local condition”) Given a collection U Ă PpXq of open sets such that
Ť

U “ X, then f is continuous if and only if f |U : U Ñ Y is continuous for each U P U
(equivalently, each x P X has an open neighborhood U such that f |U is continuous).

(ii) (“Pasting lemma”) If A,B Ă X are closed and X “ AYB, and if the restrictions f |A : AÑ
Y and f |B : B Ñ Y are continuous, then so is f .

Corollary 3.2.8. The absolute value function |´| : R Ñ R is continuous, and so is the taxicab
norm ∥´∥Tc : Rn Ñ R.

3.3. Closures, interiors, and sequences.

Definition 3.3.1. Given a subset A of a topological space X, the interior of A, denote IntA, is
the union all of all open sets contained in A (or equivalently, the largest open set contained in
A), and the closure of A, denoted ClA or Ā, is the intersection of all closed sets containing A (or
equivalently the smallest closed set containing A).

The boundary BA of A is the set BA “ Ā´ IntpAq.
Note that IntA Ă A Ă Ā, and the first or second inclusion is an equality iff A is open or closed,

respectively.

Theorem 3.3.2. A subset A of a topological space X is closed if and only if BA Ă A, and is open
if and only if BAXA “ H.

Theorem 3.3.3. Given a subset A of a topological space X and a point x P X:

(i) x P IntA if and only if there is some open neighborhood of X contained in A
(ii) x P Ā if and only if each open neighborhood of x intersects A
(iii) x P BA if and only if each neighborhood of x intersects both A and X ´A.

Definition 3.3.4. Given a sequence pxnq in a set X and a subset U Ă X, we say that pxnq is
eventually in U if there is some N P N such that xn P U for n ě N .

If X is a topological space, we say that pxnq converges to a point x P X, or that x is a limit of

pxnq, and write xn
nÑ8
ÝÝÝÑ x, if for each open neighborhood U of x, pxnq is eventually in U .

Theorem 3.3.5.

(i) If X is a metric space, then xn
nÑ8
ÝÝÝÑ x if and only if for each ε ą 0, there is some N P N

such that dpx, xnq ă ε for all n ě N .

(ii) More generally, if B is a basis for the topological space X, then in the definition of xn
nÑ8
ÝÝÝÑ

x, it suffices to consider open neighborhood U of x with U P B.
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Theorem 3.3.6. Let X be a topological space, let A Ă X a subset, and let y P X. Then the
following three implications hold. If X is metrizable, then the reverse implications hold as well.

There is a sequence pynq in

A with yn
nÑ8
ÝÝÝÑ y.

y P Ā

A is closed

For any sequence pxnq in
A, if pxnq coverges to some
x P X, we have x P A
(i.e., A is “closed under
limits”).

A is open

For any sequence pxnq in
X, if pxnq converges to
some x P A, then pxnq is
eventually in A.

Xmetrizable

Xmetrizable

Xmetrizable

Theorem 3.3.7. Let f : X Ñ Y be a map between topological spaces. Then the following impli-
cation holds, and the reverse implication holds if X is metrizable.

f is continuous

For each sequence pxnqnPN in X con-
verging to some x P X, the sequence
pfpxnqqnPN in Y converges to fpxq; i.e.,

xn
nÑ8
ÝÝÝÑ x ùñ fpxnq

nÑ8
ÝÝÝÑ fpxq.

Xmetrizable

Definition 3.3.8. A topological space X is Hausdorff or T2 if any two points have disjoint open
neighborhoods; i.e., for any x, y P X, there are open sets U Q x and V Q y such that U X V “ H.

Theorem 3.3.9. Metric spaces are Hausdorff.

Theorem 3.3.10. If a topological space X is Hausdorff, then any sequence in X has at most one
limit.

Definition 3.3.11. Let X be a topological space.

‚ Two points x, y P X are topologically distinguishable if there is an open set U such that
x P U S y or x R U Q y.

‚ X is T0 if any two points are topologically distinguishable.
‚ X is T1 if for any two points x, y P X, there is an open set U such that x P U S y.
(Equivalently, each singleton set txu in X is closed.)

‚ X is T3 or regular Hausdorff if “points and closed sets have disjoint open neighborhoods”:
it is T1 and, given any point x P X and closed set C Ă X, there are open sets U Q x and
V Ą C such that U X V “ H.

‚ X is T4 or normal Hausdorff if “any two closed sets have disjoint open neighborhoods”: it
is T1 and, given any two closed sets B,C Ă X, there are open sets U Ą B and V Ą C such
that U X V “ H.

Note that T4 ñ T3 ñ T2 ñ T1 ñ T0.

Theorem 3.3.12. Every metric space is normal Hausdorff.
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Definition 3.3.13. Let X be a topological space and A Ă X a subset. A point x P X is a limit
point if it satisfies either of the following equivalent conditions:

(i) every open neighborhood of x intersects A´ txu

(ii) x P A´ txu

The set of limit points is denoted A1. Note that Ā “ AYA1.

Note also that if panq is a sequence in A´ txu and an
nÑ8
ÝÝÝÑ x, then x P A1. If X is metrizable,

the converse is true as well.

3.4. Connectedness.

Definition 3.4.1. A topological space X is connected if the only open partition tU, V u (i.e.,
U, V Ă X are open and U “ V ´X) of tU, V u “ tH, Xu.

Remark 3.4.2. Here, we are using the word “partition” in a slightly different way than we did in
Definition 1.4.3, since we are allowing the empty set to be an element of a partition. If we wanted
to be strictly correct, we should say that X is connected if the only open partition of X is tXu.
However, going forward, we will not worry so much about this distinction.

Definition 3.4.3. A subset of a topological space is clopen if it is both open and closed.

Theorem 3.4.4. A topological space X is connected iff and only if the only clopen subsets of X
are X and H.

Definition 3.4.5. A connected component of a topological space X is a maximal connected subset
of X; i.e., a connected subset U Ă X such that if U Ĺ V Ă X, then V is not connected.

Theorem 3.4.6. For any topological space X, the set of all connected components of X form a
partition of X.

The proof uses the following two lemmas.

Lemma 3.4.7. If A Ă X is a connected subset of a space X and tU, V u is an open partition of X,
then A Ă U or A Ă V .

Lemma 3.4.8. If A Ă PpXq is a (non-empty) collection of connected subsets of a topological space
X and

Ş

A is non-empty, then the union Y “
Ť

A is connected.

Definition 3.4.9. Let pX,ďq be a totally ordered set. A subset A Ă X is convex if for any a, b P A
with a ă b, we have ra, bs Ă A, i.e., c P A for all a ă c ă b.

In R the convex subsets are precisely R itself, the open, half-open, and closed intervals pa, bq,
pa, bs, ra, bq, and ra, bs, and the open and closed rays pa,8q, p´8, bq, ra,8q, and p´8, bs.

Theorem 3.4.10. A subset A Ă R is connected if and only if it is convex. In particular, R is
connected, as is any interval or ray.

Theorem 3.4.11 (Intermediate value theorem). Let X be a connected topological space and let
f : X Ñ R be a continuous map. Then for any a, b P X and r P R between fpaq and fpbq (i.e.,
r P

`

fpaq, fpbq
˘

or r P
`

fpbq, fpaq
˘

), there is some c P X with fpcq “ r.
(The classical intermediate value theorem is the special case X “ ra, bs, which is connected by

Theorem 3.4.10.)

The proof uses the following lemma.
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Lemma 3.4.12. Let X be a connected topological space and f : X Ñ Y a continuous map. Then
the image fpXq is also connected.

Theorem 3.4.13. Any finite product of connected topological spaces is connected.
In particular, Rn is connected.

Definition 3.4.14. Given points a, b P X in a topological space X, a path from a to b is a
continuous map γ : r0, 1s Ñ X with γp0q “ a and γp1q “ b.

A topological space is path-connected if there is a path joining any two points in X.

Theorem 3.4.15. A path-connected topological space is connected.

Theorem 3.4.16. The spaces R and R2 are not homeomorphic.

Definition/Theorem 3.4.17. For a space X and points x, y P X, define x „ y to mean that there
exists a path from x to y.

Then „ is an equivalence relation. The equivalence classes are called the path components of X.

Definition 3.4.18. A space X is locally path connected if for each point x and each neighborhood
U of x, there is a smaller neighborhood V Ă U of x which is path-connected.

Theorem 3.4.19. Let X be a locally path connected space. Then the path components of X are
the same as the connected components.

In particular, (if X is locally path connected, then) X is connected if and only if it is path
connected.

3.5. Compactness.

Definition 3.5.1. A collection U Ă PpXq of subsets of a space X is said to cover X, or to be a
covering (or a cover) of X, if

Ť

U “ X. It is an open cover if each U P U is open.
A space X is compact if every open covering U Ă PpXq contains a finite subcover, i.e., there is

a finite subset V Ă U which also covers X.

Remark 3.5.2. Sometimes, it is more convenient to define a covering of X as an indexed family
tUαuαPJ of subsets of X such that

Ť

αPJ Uα “ X (rather than as a set U Ă PpXq of subsets of X).
With this notion of covering, X is compact if and only if for each such covering tUαuαPJ , there

is a finite subset J 1 Ă J such that tUαuαPJ 1 is still a covering (of course, the two definitions of
compactness are equivalent).

Theorem 3.5.3. If X is a compact space, then for any continuous map f : X Ñ Y , the image
fpXq is compact.

The proof uses the following lemma.

Lemma 3.5.4. Let A Ă X be a subspace of a space X. Then A is compact if and only if for each
covering of A by open sets in X admits a finite subcover; i.e., given a collection U Ă PpXq of open
sets in X such that A Ă

Ť

U , there is a finite subset V Ă U such that A Ă
Ť

V.

Theorem 3.5.5. If X is a compact space, then any continuous map f : X Ñ R attains a maximal
and minimal value, i.e., there exist x, z P X such that fpxq ď fpyq ď fpzq for all y P X.

Theorem 3.5.6. Any closed interval ra, bs Ă R is compact.

Theorem 3.5.7. A finite product of compact spaces is compact.
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The proof uses the following two lemma.

Lemma 3.5.8 (Tube lemma). Let X and Y be spaces, with Y compact. If N is an open subset
of X ˆ Y such that tx0u ˆ Y Ă N for some x0 P X, then W ˆX Ă Y for some open neighborhood
W Ă X of x0.

Theorem 3.5.9. A subset of Rn is compact if and only if it closed and bounded (meaning that it
is contained in some ball BRp0q).

The proof uses the following two lemmas.

Lemma 3.5.10. Any closed subset of a compact space is compact.

Lemma 3.5.11. Any compact subset of a Hausdorff space is closed.

This lemma uses the following lemma:

Lemma 3.5.12. If K Ă X is a compact subspace of a Hausdorff space X and x P X ´K, then
there are disjoint open sets U, V Ă X with K Ă X and x P V

Remark 3.5.13. You may want to compare this the definition of “T3/Hausdorff regular” (Defini-
tion 3.3.11). In particular, it follows from the previous lemmas that compact Hausdorff spaces are
T3.

Theorem 3.5.14. If f : X Ñ Y is a continuous bijection where X is compact and Y is Hausdorff,
then f is a homeomorphism.

Definition 3.5.15. A topological space is limit point compact if each infinite set has a limit point.
A space X is sequentially compact if each sequence has a convergence subsequence, i.e., for any

sequence pxnqnPN in X, there exists an increasing sequence pniqiPN of natural numbers such that
the sequence Xni converges.

Theorem 3.5.16. Any compact space is limit point compact and any sequentially compact space
is limit point compact.

Theorem 3.5.17. If X is a metrizable space, then the following are equivalent:

(1) X is compact
(2) X is limit-point compact
(3) X is sequentially compact

The proof of (3)ñ(1) uses the following two lemmas.

Lemma 3.5.18 (Lebesgue number lemma). Let X be a sequentially compact metric space and
let U be an open covering of X. Then there exists an δ ą 0 such that Bδpxq is contained in some
U P U for every x P X.

Lemma 3.5.19 (ε-net lemma). Let X be a sequentially compact metric space and let U be an
open covering of X. Then for every ε ą 0, there exists a covering of X by finitely many open balls
Bεpxq (such a covering is called an “ε-net”).

The Lebesgue lemma has the following nice corollary about maps between metric spaces (note
that this theorem really uses the metric; it is a statement about metric spaces, not metrizable
spaces).

Theorem 3.5.20. If pX, dXq and pY, dY q are metric spaces, and X is compact, then any continuous
map f : X Ñ Y is uniformly continuous, meaning that for any ε ą 0 there exists a δ ą 0 such that
for all x1, x2 P X, if dpx1, x2q ă δ, then dY pfpx1q, fpx2qq ă ε).
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3.6. The quotient topology.

Definition 3.6.1. Let „Ă XˆX be an equivalence relation on a topological space X The quotient
map associated to „ is the map qX : X Ñ X{„ defined by qXpxq “ rxs P X{„ for x P X.

We define the quotient topology on X{ „ by declaring that a subset U Ă X{ „ is open if and only

if q´1
X pXq is open (equivalently: A Ă X{ „ is closed if and only if q´1

X pAq is closed); equivalently,
it is the finest topology on X{ „ for which qX is continuous.

Theorem 3.6.2.

(i) Let X and Y be sets, let „ be an equivalence relation on a X, and let f : X Ñ Y be a
function.

Denote as before by qX : X Ñ X{„ the quotient map.
Then there exists a map f̄ : X Ñ Y with f̄ ˝ qX “ f if and only if f respects the

equivalence relation „, i.e. f satisfies fpxq “ fpx1q whenever x „ x1.
Moreover, such an f̄ is uniquely determined and is given by f̄prxsq “ fpxq for any x P X.

X Y

X{„

qX

f

f̄

(ii) Let f : X Ñ Y be a map of topological spaces and let „Ă XˆX be an equivalence relation
on X. Suppose f respects the equivalence relation „.

Then f is continuous if and only if the induced map f̄ : X{„ Ñ Y is continuous.

Remark 3.6.3. Consider the relation on R Ă r0, 1s ˆ r0, 1s given by p0, tqRp1, tq for t P r0, 1s and
ps, 0q „ ps, 1q for s P r0, 1s. We might want to speak of the quotient by R – namely, the space
obtained from r0, 1sˆr0, 1s by glueing opposite sides – but we cannot, since R is not an equivalence
relation. In such cases, we can use the equivalence relation generated by R.

In general, given a relation R Ă XˆX on a set X, the equivalence relation „Ă XˆX generated
by R is characterized by the following equivalent conditions:

(1) „R is the smallest equivalence relation „Ă X ˆX on X containing R (i.e., with R Ă„).
(2) „R is the intersection of all equivalence relations on X containing R.
(3) Explicitly, we have x „R y if and only if there exists n ě 1 and x1, . . . , xn P X with

x1Rx2R ¨ ¨ ¨Rxn with px, yq “ px1, xnq or py, xq “ px1, xnq.

Definition 3.6.4. Let f : X Ñ Y be a map of sets. We define the kernel relation of X to be the
equivalence relation „f Ă X ˆX given by x„fy ðñ fpxq “ fpyq.

Remark 3.6.5. Let f : X Ñ Y be a surjective map between sets and consider the kernel relation
„f on X. It is clear that f respects the equivalence relation „f .

Hence, by Theorem 3.6.2 (i), we have an induced map f̄ : X{„f Ñ Y :

X Y

X{„f

qX

f

f̄

It is easy to see that (assuming f is surjective), the induced map f̄ is always a bijection.
(In other words, “every surjective map is a quotient map, up to a bijection”.)
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(More generally, even if f is not surjective, one can say that f̄ is always a bijection f̄ : X{„f Ñ

fpXq onto the image of f ; this is an analog of the “first isomorphism theorem” form algebra.)

Definition/Theorem 3.6.6. Let f : X Ñ Y be a surjective map of topological spaces. If either
of the following equivalent conditions hold, we say that f is a quotient map:

(i) A subset U Ă Y is open if and only if f´1pUq Ă X is open (equivalently: A Ă Y is closed
if and only if f´1pUq Ă X is closed).

(ii) The induced map f̄ : X{„f Ñ Y is a homeomorphism.

Remark 3.6.7. Note that in Definition 3.6.1, we talk about the quotient map associated to an
equivalence relation on a set, whereas in Definition/Theorem 3.6.6, we talk more generally about
an arbitrary surjective map being a quotient map.

Of course, the quotient map associated to an equivalence relation is a particular case of a quotient
map.

Remark 3.6.8. Theorem 3.6.2 holds more generally with qX : X Ñ X{„ replaced by any quotient
map q : X Ñ Z and with „ replaced by the kernel relation „q.

Theorem 3.6.9. Let f : X Ñ Y be a continuous map. If f is a closed map (i.e., takes closed
subsets to closed subsets) or an open map (i.e., takes open subsets to open subsets), then f is a
quotient map.

Definition 3.6.10. An embedding of a topological space A into a topological space X is an
injective continuous map i : AÑ X such that the induced map i : AÑ ipAq onto the image of A is
a homeomorphism.

For example, the inclusion i : AÑ X of any subspace A Ă X is an embedding.

Definition 3.6.11. Let tXαuαPJ be a family of spaces and consider the disjoint union
Ů

αPJ Xα.
Let iα : Xα Ñ

Ů

βPJ Xβ be the canonical injections given by iαpxq “ pα, xq.

We define the disjoint union topology on
Ů

αPJ Xα by declaring that U Ă
Ů

αPJ Xα if and only
if i´1

α pUq is open in Xα for each α P J ; it is the unique topology on
Ů

αPJ Xα such that iα is an
embedding for each α. (It is also the finest topology such that each iα is continuous.)

Definition 3.6.12. Let X,Y,A be topological spaces and fix embeddings i : AÑ X and j : AÑ Y .

Denote by X
iX
ÝÝÑ X \ Y

iY
ÐÝ Y the canonical embeddings into the disjoint union.

The identification space of X and Y along A, denoted XYA Y is the quotient space pX\Y q{ „,
where „ is the (equivalence relation generated by) the relation tpiXpipaqq, iY pjpaqqq | a P Au.

(Note that both the name and the notation obscure the fact that X YA Y depends on the
embeddings i and j.)

Theorem 3.6.13. Let A,B Ă X be closed subspaces of a space X and let C “ A X B be the

intersection, so that we have the inclusions A
i
ÐÝ C

i1

ÝÑ B.
Then AYC B – X.

4. Function spaces

4.1. The topology of pointwise convergence.

Definition 4.1.1. Let X and Y be topological spaces. Recall that the set of all functions Y X is
the same as the product space Y X “

ś

xPX Y .
The topology of pointwise convergence on Y X is by definition just the product topology.
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Explicitly, a subbasis for this topology is given by all the sets Bx,U “ tf P Y
X : fpxq P Uu, where

x P X and U Ă Y is open.

Theorem 4.1.2. Let X and Y be topological spaces. Endow the space Y X with the topology of
pointwise convergence.

Then a sequence pfnqnPN in Y X converges to some f P Y X if and only if fnpxq
nÑ8
ÝÝÝÑ fpxq for

each x P X.

4.2. The supremum metric.

Definition 4.2.1. Let 8 be some fixed thing which is not an element of R.
We define the extended real numbers to be the set R8 :“ R Y t8u. We extend the standard

ordering ď on R to R8 by declaring x ď 8 for all x P R.
An extended metric on a set X is a function d : X ˆ X Ñ R8 satisfying the usual conditions

of a metric: positivity, symmetry, and triangle inequality, but interpreted now with respect to the
partial order on R8.

Definition/Theorem 4.2.2. For any extended metric d : X ˆX Ñ R8 on a set X and for any
T ą 0, the function dT : X ˆX Ñ R8 defined by dT px, yq “ maxtdpx, yq, T u is a metric on X.

The metric topology on X associated to T is independent of T and is called the metric topology
associated to d. Explicitly, it has as a basis the sets Brpx; dq “ ty P X | dpx, yq ă ru for x P X and
r P R.

Definition/Theorem 4.2.3. Let X be a set and pY, dq a metric space.
The function dpf, gq “ supxPX dpfpxq, gpxqq defined on Y X is an extended metric, called the

supremum (extended) metric on Y X .
The topology induced by this extended metric is called the topology of uniform convergence (with

respect to the metric d).

Showing that this is a metric uses the following lemma:

Lemma 4.2.4. Given bounded non-empty subsets A,B Ă R, we have

supA` supB “ supta` b | a P A, b P Bu.

Remark 4.2.5. With respect to the supremum metric, it is immediate that fn
nÑ8
ÝÝÝÑ f if and only

if pfnq converges uniformly to f ; i.e.,:

@ε ą 0 DN ą 0 @n ě N @x P X
´ ∣∣fpxq ´ gpxq

∣∣ ă ε
¯

.

Theorem 4.2.6. Let X be a space and Y a metric space.
Then with respect to the supremum metric, the set CpX,Y q Ă Y X of a continuous functions is

a closed subspace (i.e., if fn
nÑ8
ÝÝÝÑ f uniformly and each fn is continuous, then f is continuous –

this is equivalent since Y X is metrizable).

4.3. The compact-open topology.

Definition 4.3.1. Let X and Y be spaces.
The compact-open topology on the set CpX,Y q of continuous functions from X to Y is defined

by having as a subbasis all sets of the form

BK,U “ tf P CpX,Y q | fpKq Ă Uu

where K Ă X is compact and U Ă Y is open.
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Theorem 4.3.2. If X is a compact space and pY, dq is a metric space, then the compact-open
topology on CpX,Y q agrees with the topology of uniform convergence with respect to d; in particular,
the topology of uniform convergence on CpX,Y q does not depend on the metric d.

The proof uses one direction of the following useful lemma:

Lemma 4.3.3. A function f : X Ñ Y between topological spaces is continuous if fpĀq Ă fpAq for
all A Ă X.

Remark 4.3.4. We now know that if X is compact and Y is a metric space, then a sequence

fn : X Ñ Y converges to some f : X Ñ Y in the compact-open topology if and only if fn
nÑ8
ÝÝÝÑ f

uniformly.
By similar arguments to the ones above, one can show that for a general X and Y a metric

space, we have that convergence fn
nÑ8
ÝÝÝÑ f in the compact-open topology is uniform convergence

on compact sets, i.e., for each compact K Ă X, we have that fn|K
nÑ8
ÝÝÝÑ f |K uniformly.

4.4. Continuous functions into functions spaces.

Theorem 4.4.1. Let X,Y, Z be spaces and let f : X ˆ Y Ñ Z be a continuous function.
Then for each x P X, the function F pxq : Y Ñ Z defined by F pxqpyq “ fpx, yq is continuous,

and the resulting function F : X Ñ CpY, Zq is continuous as well (where we equip CpY,Zq with the
compact-open topology).

Definition 4.4.2. A space X is locally compact Hausdorff if it is Hausdorff and, for each neigh-
bourhoods U of a point x P X, there is a neighbourhood V Ă X such that V̄ is compact and
V̄ Ă X.

Remark 4.4.3. As the name suggests, there is a weaker notion of local compactness such that X
is locally compact Hausdorff if and only if it is locally compact and Hausdorff.

Theorem 4.4.4. Any closed subspace of Rn is locally compact Hausdorff (for any n).

Theorem 4.4.5. Let X,Y be spaces and assume X is locally compact Hausdorff. Then the map
ev : CpX,Y q ˆ X Ñ Y given by evpf, xq “ fpxq is continuous (where we equip CpY,Zq with the
compact-open topology).

Corollary 4.4.6. Let X,Y, Z be spaces and assume X is locally compact Hausdorff.
Then given a continuous map F : X Ñ CpY, Zq (where we equip CpY,Zq with the compact-open

topology), the map f : X ˆ Y Ñ Z defined by fpx, yq “ F pxqpyq is continuous.

5. A bit of algebraic topology

5.1. Homotopy.

Definition 5.1.1. Given spaces X and Y and continuous maps f, g : X Ñ Y , a homotopy from X
to Y is a map H : X ˆ r0, 1s Ñ Y such that Hpx, 0q “ fpxq and Hpx, 1q “ gpxq for all x P X.

If there exists a homotopy from f to g, we say that f and g are homotopic and write f „ g.

Remark 5.1.2. Any homotopy H : X ˆ r0, 1s Ñ Y from f to g defines a path r0, 1s Ñ CpX,Y q
from f to g. It is common to write ht : X Ñ Y for hptq.

If X is locally compact Hausdorff, then the converse also hoods, and hence a homotopy from f
to g can simply be defined as a path from f to g in CpX,Y q.
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Theorem 5.1.3. Given spaces X and Y , the relation on CpX,Y q of being homotopic is an equiv-
alence relation.

Definition 5.1.4. Let α and β be paths in a space X from x0 P X to x1 P X; i.e., αp0q “ βp0q “ x0

and αp0q “ β1q “ x1. A homotopy relative to the endpoints (or just homotopy rel endpoints, or
even just homotopy) between α and β is a continuous map H : r0, 1s ˆ r0, 1s Ñ X such that

$

’

’

’

&

’

’

’

%

Hps, 0q “ αpsq, @s P r0, 1s

Hps, 1q “ βpsq, @s P r0, 1s

Hp0, tq “ x0, @t P r0, 1s

Hp1, tq “ x1, @t P r0, 1s

Equivalently (since r0, 1s is locally compact Hausdorff), a homotopy rel endpoints from α to β
is a path from α to β in the space of paths in X from x0 to x1, denoted Px0,X0

pXq and defined as

Px0,x1pXq “ tγ P Cpr0, 1s, Xq | γp0q “ x0 and γp1q “ x1u Ă Cpr0, 1s, Xq
If such a homotopy exists, we say that α0 and α1 are homotopic rel endpoints (or just homotopic),

and we write α0 „ α1.

Theorem 5.1.5. The relation on Px0,x1
pXq of being homotopic rel endpoints is an equivalence

relation.

Definition 5.1.6. A space X is simply connected if for any x, y P X, there is a unique homotopy
class of paths from x to y.

Definition 5.1.7. A set U Ă Rn is convex if x` tpx´yq P U for each x,y P U and each t P r0, 1s.

Theorem 5.1.8. Rn is simply connected.
More generally, any convex subset U Ă Rn is simply connected.

5.2. The fundamental group.

Definition 5.2.1. Let X be a space, and let α P Px0,x1pXq and β P Px1,x2pXq.
The composition of α and β is the path α ˚ β : P Px0,x2

defined by

pα ¨ βqpsq “

#

αp2sq if 0 ď s ď 1
2

βp2s´ 1q if 1
2 ď s ď 1

(That α ˚ β is continuous follows from the pasting lemma.)

Definition 5.2.2. Fix a point x0 in a space X.
The fundamental group of X based at x0 is the set of equivalence classes

π1pX,x0q “ tα : r0, 1s Ñ X | αp0q “ αp1q “ x0u{„.

In other words, π1pX,x0q is the set of path components of the loop space of X at x0 Ωx0
pXq :“

Px0,x0pXq.

Definition 5.2.3. A group is a pair pG, ¨q consisting of a set G and an operation ¨ : G ˆ G Ñ G
satisfying:

(i) (associativity) pa ¨ bq ¨ c “ a ¨ pb ¨ cq for all a, b, c P G.
(ii) (identity element) There is a unique element e P G such that e ¨ g “ g ¨ e “ g for all g P G.
(iii) (inverses) For each g P G, there is a unique element g´1 such that g ¨ g´1 “ g´1 ¨ g “ e for

all g P G.
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As usual, we often conflate a group pG, ¨q with its underlying set G.

Theorem 5.2.4. There is a unique group structure ¨ on π1pX,x0q defined by the property that
rαs ¨ rβs “ rα ¨ βs for all α, β P Ωx0

pXq.

Here are the key steps of the proof of the Theorem. First we have to show that the law is well
defined.

Lemma 5.2.5. If α „ α1, β „ β1 and αp1q “ βp0q, then α ¨ β „ α1 ¨ β1.

The remaining verifications all rely on the following:

Lemma 5.2.6. Given any paths γ and δ in a space Y (with the same endpoints) and a continuous
map f : Y Ñ Z, if γ „ δ, then f ˝ γ „ f ˝ δ.

We next have to show that the law is associative.

Lemma 5.2.7. If αp1q “ βp0q and βp1q “ γp0q, then pα ¨ βq ¨ γ „ α ¨ pβ ¨ γq.

We then have to find an identity element. For this, given x P X, let constx : r0, 1s Ñ X denote
the constant path defined by constxpsq “ x for every s P r0, 1s.

Lemma 5.2.8. constαp0q ¨ α „ α „ α ¨ constαp1q for every path α.

Finally, we need an inverse. The opposite of a path α, denoted α´1, is the path obtained by
traveling backwards, namely defined by α´1psq “ αp1´ sq.

Lemma 5.2.9. α ¨ α´1 „ constαp0q and α´1 ¨ α „ constαp1q for every path α.

Definition 5.2.10. Given groups G andH, a homomorphism from G toH is a map φ : GÑ H such
that φpeGq “ eH (where eG and eH are the identity elements of G and H) and φpg ¨hq “ φpgq ¨φphq
for all g, h P G.

If φ is further a bijection, we say that φ is an isomorphism and that G and H are isomorphic,
and write G – H. (Note in this case that φ´1 is automatically an isomorphism as well.)

Theorem 5.2.11. IfX is a space and x0, x1 P X are in the same path-component, then π1pX,x0q –

π1pX,x1q.

Theorem 5.2.12. If X is path-connected and π1pX,x0q “ teu for some (and hence any) x0 P X,
then X is simply connected.

5.3. Homomorphisms induced by maps.

Definition/Theorem 5.3.1. Given a continuous map f : X Ñ Y , the map f˚ : π1pX,x0q Ñ

π1pY, y0q defined by f˚prαsq “ rf ˝ αs, where y0 “ fpx0q is well-defined and is a homomorphism.
It is called the group homomorphism induced by f .

The following is called the functoriality property of the induced homomorphism.

Theorem 5.3.2. Given continuous maps X
f
ÝÑ Y

g
ÝÑ Z, with y0 “ fpx0q and z0 “ gpy0q, we have

pg ˝ fq˚ “ g˚ ˝ f˚ : π1pX,x0q Ñ π1pZ, z0q

Also, we have
pidXq˚ “ idπ1pX,x0q : π1pX,x0q Ñ π1pX,x0q

Functoriality implies the fundamental property of isomorphism-invariance:
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Corollary 5.3.3. If X and Y are homeomorphic and both path-connected, then for any x0 P X
and y0 P Y , we have π1pX,x0q – π1pY, y0q.

Equivalently, if X and Y (are path-connected and) have non-isomorphic fundamental groups,
then they are not homeomorphic!

We can strengthen the isomorphism-invariance and show invariance under homotopy equivalence.

Theorem 5.3.4. Let X and Y be spaces, and let x0 P X. Let f, g : X Ñ Y be such that
fpx0q “ gpx0q “: y0.

If there is a homotopy H from f to g such that Hpx0, tq “ y0 for all t, then the two homomor-
phisms f˚ and g˚ : πpX,x0q Ñ π1pY, y0q are equal.

Definition 5.3.5. A retraction of a topological space X onto a subspace Y Ă X is a continuous
map f : X Ñ Y such that f |Y “ idY . Y is then said to be a retract of X.

The retraction f : X Ñ Y is a deformation retraction if there exists a homotopy ht from idX to
f ˝ iY (where iY : Y ãÑ X is the inclusion) which fixes Y , i.e. ht|Y “ idY for all Y . (Note that this
is sometimes called a strong deformation retraction.) In this case, Y is said to be a deformation
retract of X.

Theorem 5.3.6. If Y Ă X is a deformation retract, then π1pX,x0q – π1pY, x0q for any x0 P Y .

Corollary 5.3.7. For any n ě 1 and any x0 P S
n, we have π1pS

n, x0q – π1pRn`1zt0u, X0q.

5.4. Fundamental group of the circle.

Theorem 5.4.1. π1pS
1, x0q – Z for any x0 P S

1.

5.5. Baby Seifert-Van Kampen theorem.

Theorem 5.5.1. Let X be a space and let U, V Ă X be an open covering with non-empty inter-
section, and let x0 P U X V .

If π1pU, x0q “ teu and π1pV, x0q “ teu, then π1pX,x0q “ teu.

Corollary 5.5.2. π1pS
n, x0q is trivial for n ě 2.

Theorem 5.5.3. R2 fl Rn for n ą 2.

5.6. Products.

Theorem 5.6.1. Let the product X ˆ Y of the two topological spaces X and Y be endowed with
the product topology, and let p : X ˆ Y Ñ X and q : X ˆ Y Ñ Y be the two projection maps
defined by ppx, yq “ x and qpx, yq “ y. Then the product map

xp˚, q˚y : π1

`

X ˆ Y, px0, y0q
˘

Ñ π1pX,x0q ˆ π1pY, y0q

given by xp˚, q˚ypgq “ pp˚pgq, q˚pgqq is a group isomorphism.

Corollary 5.6.2. Defining the n-torus Tn to be the n-fold product pS1qn, we have π1pTn, x0q – Zn

(for any x0 P Tn).

Corollary 5.6.3. T2 fl S2.
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