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1 Introduction

1.1 What is a shell?

For my independent study project, I have written a Unix shell in the program-
ming language C. This is because a shell is one of the most important programs
in a Unix environment, and writing one displays many of the most important
aspects of a Unix environment and of C.

So what is a shell? You can think of the shell as the most basic program
which runs on an operating system. It is what the user interacts with. What
should such a program be able to do? Well, at the very least, it should allow the
user to run other programs. With this, you can do whatever all the programs
on your computer can do; without, it, you can’t do anything.

Traditionally, before graphical user interfaces were common, and for some
time afterwards, the way in which the user interacted with the operating sys-
tem was through a command line interface (often abbreviated CLI). It is this
type of command line program which I refer to as shell, and it is this type of
program which I have written. On modern operating systems such as Windows,
Mac OSX, and Linux, the shell has been superseded by graphical user interfaces
as the primary means of interacting with the computer. The shell is generally
used, if at all, inside a window within the graphical interface. On certain sys-
tems such as Windows, it is then used to accomplish certain tasks which can’t
be accomplished through the graphical interface, and also as a fallback in case
the graphical interface should for some reason fail.

On Linux and similar systems, however, the shell is still quite popular as
a primary means of getting things done, as it is considered a better way of
accomplishing certain tasks (though whether and why this is the case is a dis-
cussion outside of the scope of this paper). Furthermore, on such systems, there
is a clearer distinction than in Windows between the operating system and the
graphical interface, and for example, a fully functional and capable system can
be run in Linux without a graphical interface.

1.2 Linux vs Unix

I have referred to the shell I have written as a “Unix shell”. I have also made
reference to the operating system Linux. Some clarification is needed here as
to the nature and significance of these things. Unix is an operating system
created in the 70s. It has a rich and complex history (which, interesting as
it is, is outside the scope of this paper), which has resulted in the existence
of many “Unix-like” systems – that is, operating systems that share the core
Unix structure and functionality – some of which are free and others which are
proprietary. By far the most popular free personal Unix-like system is Linux.
This is the operating system I use, and it is the one in which I wrote this shell.

Over time, shells on Unix developed in such a way that today a “Unix shell”
is clearly recognizable as such and has a certain set of fairly standard features.
So even though the shell which I have written is technically a “Linux shell”
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in that it was written and runs on a Linux system, the fact of the particular
Unix-like system on which I have written this shell has very little bearing on
the program itself, and so I call it a “Unix shell” because it is in the style of
these classic and standard Unix shells (also because it sounds cool). I should
note that I may refer to the system in which this shell is running as Linux or
Unix interchangeably.

2 Important Unix and C concepts

Here I will outline some important aspects of the Unix system and C which
are relevant to the shell and essential to understanding its workings. I am,
however, assuming an understanding of general concepts of programming and
of the C language, including functions, flow control, pointers, memory allocation
(malloc() and free()), structures, header files, macros, etc.

2.1 System calls and the POSIX standard library

There is a set of C functions included in every Unix-like system called system
calls (or syscalls). These provide a means by which a program can perform
low-level functions, for things like opening files and creating processes.

These system calls are a part of an extension to the C standard library called
the “POSIX standard library” (“POSIX” being the name of a standard describ-
ing Unix-like systems). Besides the Unix system calls, this library provides a
multitude of other useful system-related tools, for such tasks as manipulating
environment variables, obtaining information about users etc. It is possible
that if I refer to the “standard library” below, I really mean the POSIX library
combined with the standard standard library.

2.2 “Everything is a file” and file descriptors

In Unix there is an important concept which is that “everything is a file”. This
means that generally any external thing with which a program interacts and
exchanges data will be treated by the program exactly like a file. So how do
programs treat files?

At the most basic level, programs interact with files primarily with four sys-
tem calls (§2.1): open(), close(), read(), and write(). The open() system
call takes as an argument the name of a file on the file system, and returns an
integer called a file descriptor. Every process has a table which associates every
open file with a file descriptor. The program itself doesn’t have access to this
table. All it knows is that if it opens a certain file, the file descriptor returned
will be associated with that file until it is closed. So, for example, the function
close() simply takes an integer, which is the file descriptor of some file which
has been opened. The read() and write() system calls take an integer, and
either take a string to be written to, or return a string read from the file whose
file descriptor is that integer.
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Because “everything is a file”, this exact same process will be used in, for
example, interfacing with devices. The device is represented by a file on the
file system. This file is opened with open(), then to send data to the device
(producing sound in a speaker, for instance), I write() appropriate data to the
corresponding file descriptor.

Another important system call related to file descriptors is dup(). dup()

takes a file descriptor, and “duplicates” it, so that there are now two file de-
scriptors representing the same file. We will see the significance of this later
on.

2.3 Streams, stdin, stdout, and stderr

Most of the reading and writing in everyday C programming is not done with
low-level system calls and file descriptors, but with streams. Streams are a
system-independent input/output mechanism which is part of the C standard
library and which serves to create a consistent interface across systems, making
the nitty-gritty details of I/O transparent to the programmer. I won’t get too
much into the details of streams. Suffice it to say that a stream is opened with
the function fopen(), which itself calls open(), gets a file descriptor (which
the caller of fopen() doesn’t see) and returns a special stream structure. It
is on these structures which the common output functions like fprintf() (for
printing formatted text on a specified stream) operate.

More common than fprintf() is the function printf() which doesn’t take
a stream as an argument, but just prints the specified text “to the screen”
(exactly what this means will be made clear soon). The way that this is
accomplished is with two global stream variables, defined in the header file
stdio.h, and called stdin and stdout (which stand for standard input and
standard output). A call like printf("string") is then equivalent to a call of
fprintf(stdout, "string"). Similarly, the function getchar(), which gets a
character from standard input, is equivalent to the more general getc(), which
can operate on any stream.

On a Unix system, the stdin and stdout streams are guaranteed to be
associated, by default, with the file descriptors 0 and 1, respectively (we will
soon see the significance of this as well). So file descriptor 1 is associated with
some “magical” file which prints to the screen whenever it is written to, and
file descriptor 0 is associated with some “magical” file which returns the user’s
input every time it is read from. The nature of this magic will be elucidated in
the next section.

There is also a third stream defined by default in stdio.h called stderr,
which is associated with file descriptor 2, and used mainly to print error mes-
sages. Printing to this file descriptor usually just puts the output in the same
place as stdout, but it is nonetheless useful for various reasons, one of which
will be discussed in §3.1.5.
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2.4 Terminals

All this standard input and output stuff seems a bit strange and esoteric. It
is rare, however, that some aspect of the Unix system isn’t totally transparent,
and this is no exception.

The shell is a text-based program. The user interacts with it via a termi-
nal. Traditionally, a terminal was a physical machine which connected to the
computer, and which had a keyboard and a screen capable of displaying char-
acters. Before that, teletypes were used, which had a keyboard for input and
a typewriter printout for output. This goes to show that it truly is text based,
and there are no graphical components to the shell at all. Today, we don’t use
terminals.

In Linux, the shell interacts instead with a Virtual Terminal. This is gener-
ally a window inside the graphical windowing system which displays characters
just like a real terminal or a teletype. The virtual terminal presents to the
program an interface which is indistinguishable from that of a real terminal.
Therefore, the type of terminal is completely transparent to the program. This
interface is simply a special file on the file system which represents the terminal.
Traditionally, then, this would be a device file which, when written to, would
send the written data out to the terminal and, when read from, would read data
sent in from the terminal. Now, of course, rather than sending and receiving
data from a real device, this file sends it to and receives it from the virtual
terminal, which is just another process.

So to say that stdout “goes to the screen” is really just to say that the open
file associated with file descriptor 1 is the special file representing the virtual
terminal which the shell is connected to. The same goes for standard input*.

2.5 fork() and exec()

The system calls fork() and exec() are what effect process creation in Unix.
This is obviously important to our discussion, since the primary purpose of the
shell is to launch other programs.

The only way to create a new process in Unix is with fork(). fork() creates
a new process which is an exact replica of the calling process, with a few slight
differences. The most important difference is the value returned by fork().
Because the new, duplicated process (called the child), and the parent process
are (almost) identical, after fork() has done its job, both processes think that
they have just called fork(), and expect a return value. fork() is designed in
such a way that to the child, 0 is returned, and to the parent, it returns the
child’s process ID (a unique number associated with each process). This lets
each process determine whether it is the parent or the child, and act accordingly.
A call to fork will therefore look something like this:

*It may seem that I haven’t actually explained any of the magic, but just lumped it on
this amazing “device file”. This is a legitimate concern. I give a brief discussion of this in
Appendix A, because its too big for this footnote
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if(fork()) {

...

//parent code

...

} else {

...

//child code

...

}

The purpose of exec() is to replace the binary associated with the current
process by a different, specified binary. That is, if some program foo calls
exec() with "/bin/goo" as an argument, then the program foo will be running
no more, and instead the program goo will run in its place, having the same
process ID as foo once had. It is with a combination of fork() and exec(),
then, that a new program is launched. The code that accomplishes this would
look something like the following:

if(fork() == 0) {

exec("/bin/some-program");

}

// parent code

You’ll notice that in the above code snippet, there is “parent code” after the
call to fork(). This is because the child process calls exec(), thereby turning
into a different program, and so it never gets a chance to execute the “parent
code” afterwards.

You might also have noticed that in the first code snippet, the condition for
the if is (fork()) rather than (fork() != 0). This is of course just one of
those tricky shortcuts that one can make in C, because booleans are defined
in C in such a way that a value of 0 represents false and a non-zero value
represents true, so that (x != 0) is equivalent to (x).

2.6 pipe()

pipe() is another important system call. It provides a primary means of inter-
process communication. pipe() returns two integers (actually, it takes an array
of two integers as an argument, and stores the two values therein). The two
integers it returns are file descriptors. Each of these file descriptors represent
opposite ends of a one-way “pipe” maintained by the operating system, into
which data can be written and out of which data can be read. The first one
(that is, the one with array subscript [0]) is the “read end” of the pipe, and the
second is the “write end”. Just on its own, pipe() does not provide any means
of inter-process communication, but rather a means of intra-process communi-
cation, because a single process has both ends of the pipe. But when combined
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with fork(), it can serve for communication between processes. This can be
accomplished as follows:

/* declare the array to hold the file descriptors from pipe() */

int pipefd[2];

pipe(pipefd);

if (fork()) {

close(pipefd[0]);

write(pipefd[1], "Hello, child!\n", 13);

close(pipefd[1]);

} else {

close(pipefd[1]);

read(pipefd[0], NULL, 13);

close(pipefd[0]);

}

The second and third arguments of read() and write() are, respectively, a
buffer into or from which the data should be read, and the number of bytes to
be read from or written to the specified file descriptors.

The two branches of the if, of course, represent two different processes. The
parent closes the read end of the pipe, because it no longer needs it, and the
child closes the write end. The parent writes to its remaining end of the pipe,
and the child reads from its remaining end. Thus inter-process communication
is achieved. Afterwards, each process closes the remaining end of the pipe as it
no longer needs it.

2.7 The command line utilities

The usefulness and popularity of shells on Unix systems is not just due to the
shells themselves. Just as important is the huge set of standard programs that
come with any Unix system. These are various small utilities that have been
around on Unix for a long time and are a fundamental part of the Unix expe-
rience. These include programs like ls, which lists the contents of a directory,
cp and mv, which copy and move files, cat, which concatenates files, cc, the C
compiler, tar, an archiving tool, compress, a compression tool, and many oth-
ers. It is very much in the spirit of Unix that each of these tools performs a very
simple, specific, and clear task, but can be used in conjunction to accomplish
larger and more complex tasks (how they can be used in conjunction, we’ll soon
see, §3.1.6).

3 So what does it do?

I said earlier that all a shell really needs to be able to do is run other programs.
But I also said that a shell can be used as a complete replacement of a graph-
ical interface, and mentioned a certain standard set of features of Unix shells.
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So what are these features? I will list here some of the most important and
common features of shells – first the ones which I have included, then certain
ones that are missing. I will give a brief description of each feature here, and
the implementation of the ones I have included in my shell will be explained in
the following section.

3.1 Included features

3.1.1 Running programs

This is by far the most important and the fundamental role of the shell. To
explain how this is accomplished, I should give a brief overview of what the shell
is like. When the shell is started, it presents the user with some kind of prompt.
It may be as simple as this:

$

The user types a command at the prompt, and the shell executes it. The
content of these commands is generally the name of a program to execute, but as
we will see later, there are other commands as well. Any space-separated words
typed after the name of the program are called arguments, and are passed to
the program (by the char **argv array in the case of C). These are generally
used so as to allow the user to specify certain options to a program. If, for
example, a program operates on a certain file, it would take the path to that
file as an argument. Besides indicating files, arguments are often “flags”, which
generally consist of a hyphen followed by a single letter. So ls -r (“reverse”),
for example, gives me a listing of files in reverse alphabetical order, whereas
ls -l (“long”) gives me a listing with extra information. There are many other
kinds of arguments that programs take, and it varies from program to program.

Two or more commands can be entered on the same line, by separating them
with semicolons (;).

3.1.2 Built-in commands

As well as being able to run any binary available on your system, shells generally
also recognize a set of commands which cause the shell itself to perform some
task. They are generally implemented in such a way as to make their operation
exactly like that of a normal binary. That is, the built-in command is some
word, and it can take arguments which determine or alter what it does. Some
built-in commands are just replicas of executable that generally already exist
on most systems, while some perform tasks that can only be performed by the
shell itself. I have included none of the former category, and very few of the
latter. Those that I have included are described below.

3.1.3 Setting the current directory

One of the attributes which each process in a Unix system has is what is called
its working directory. This is just a certain directory in the file system “in
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which” the program can be said to be running. The program might ignore this,
but it might make use of it too. For example, the program ls will list the files
in the current working directory if no directory is specified.

Changing the shell’s working directory is accomplished by means of a built-in
command, traditionally called cd. It takes one argument, which is the directory
to switch to. I said earlier that all of the built-in commands I included were of
the sort that must be performed by the shell itself. It is clear why this is the
case for cd; if cd were an external program, all it would be able to do would be
to change the working directory of that program, which would then exit. What
needs to be done is to switch the working directory of the current process (that
is, the shell), so the shell itself must do it. Because the user can change the
directory, and the shell always has a current working directory, the user gets the
feeling of being “in” a directory at any given time (much like in a file browser)
and being able to “move around” the file system.

3.1.4 Exiting

Shells must be able to exit, and this is accomplished by a built-in command
called (surprisingly) exit. This must be a built-in and not an executable for
very much the same reason as cd (§3.1.3).

3.1.5 Redirection

One of the most basic and useful features of a shell is to be able to redirect the
input and output of programs. I said before that the standard input and output
of programs are treated just like files (§2.3). It is not hard to believe then, that
the file associated with file descriptor 1 (and therefore the file associated with
standard output) can be changed from the terminal to some file on the file
system. The typical syntax for this in shells is with the character >. So, for
example, if I want to list the contents of the current directory and store it some
file (foo), I would issue the following command:

$ ls > foo

Similarly, < is used to use a certain file as the input to a program, instead of
getting input from the terminal. >> is used to append output to a file (whereas
> overwrites the file if it already exists).

Redirection is not limited to just file descriptors 0 and 1. By prepending
the < or > by a number, the specified file is opened for reading or writing
(respectively) on that file descriptor. Moreover, redirection can be performed
from one file descriptor to another one. This is accomplished by appending the
< or > with an ampersand (&) and supplying as the file name the desired file
descriptor. For example,

$ some-program > somefile 2>&1

would redirect both standard output and standard error into somefile, rather
than just standard output. From this, we can gather why standard error is
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useful, despite the fact that it normally goes to the same place as standard
output; if the above isn’t done, but instead only standard output is redirected,
standard error remains on the terminal, and the program can still print error
messages for the user to see, even while its regular output goes into a file.

It may seem strange that the redirection of standard output into a file came
before the redirection of standard error into standard output. This is due to
the slightly unintuitive way in which redirections happen. What really happens
when we redirect file descriptor a into file descriptor b is that the file associated
with file descriptor b is copied into a. So when we redirect file descriptor 2 into
1, the file associated with descriptor 2 is closed, and whatever file is associated
with 1 is copied (via dup(), §2.2) into 2. Thus, file descriptor 2 will now point
to whatever file file descriptor 1 is associated with, creating the apparent effect
that file descriptor 2 is being channelled into 1. By default, file descriptors 1
and 2 both point to the same file (the terminal) so redirecting one into the other
will have no effect; file descriptor 1 must first be associated with somefile, and
then copied into 2. In general, then, one must be careful with the order of
redirections.

3.1.6 Pipelines

It might be argued that pipelines (or just “pipes”) are the most powerful feature
of Unix shells. I mentioned before that the different basic standard Unix utilities
can be combined to perform complex tasks. It is with pipelines that this is
accomplished. Pipes serve to redirect the output from one program directly into
the input of another program. It may not surprise you that this is accomplished
with pipe() (§2.6).

Just as with shells in general, there is nothing inherently very powerful about
pipelines, but they become powerful by virtue of the standard set of Unix tools.
Many of these tools just perform text-manipulation. A salient example is grep,
which takes as an argument a pattern, and prints out each line from the input
which matches the pattern. So, for example, if I want information on a specific
process I can use ps (which lists information about all the processes) and then
grep for the name of the specific program I’m interested in.

It is not always text that is piped. Sometimes raw data is as well. For
example, if I want to archive a bunch of files, and then compress the resulting
archive, I can have tar (the archiver) send it’s output to standard out instead
of a file, and then pipe that output into compress (the compressor), which I
can have take it’s input from standard in.

Pipelines are traditionally indicated with the vertical bar, (|). Two or more
pipelines can, of course, be used in series. As an example, the following com-
mand deletes all mp3 files in the current directories and all sub-directories:

$ find | grep -i '\.mp3$' | xargs rm
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3.1.7 Programming structures

Another one of the most powerful features of shells is scripting. Scripting con-
sists of putting a series of shell commands in a file, and then using that file as
the input to the shell, so that it executes all the commands in order. Thus the
script acts a sort of program.

In order to make these scripts do anything really interesting, however, it
is useful to have features which allow dynamic behaviour, like a program. So
certain “programming-language-like” features are typically included in a shell.
These specific features are described below.

Shell scripts can generally also be run – instead of redirecting them as the
input to the shell, which is a bit clumsy – by supplying the name of the script as
the first argument to the shell. Unix also provides an even nicer way of running
scripts, which is using the so-called “shebang” (which is short for “hash bang”
and refers to the two characters #!). If a file is run as an executable, and the first
two bytes of that file are a shebang, Unix will treat the rest of the first line (that
is, all the bytes up to the first newline byte) as the name of an executable, and
execute it with the path to the file being run as the sole argument. For example,
if I write a file whose first line is #!/some/program, then running this file (with
./filename) will be equivalent to running /some/program ./filename. If the
named executable happens to be a shell, the shell will treat the file as a script
and run it. Therefore, you can start your scripts with a

#!/bin/sh

and then just run the script from the command line, as if it was a binary in
its own right. When the shell runs such a script, this first line has no effect,
because it is treated as a comment (see §3.1.14).

A final way to run scripts is by “sourcing” them. This involves using a built-
in command (usually called source or . – that is, the name of the command is
the single character “.”) and providing as an argument the name of the script
to be executed. The difference with this method is that it runs the script in the
current shell, rather than starting a new process so that so that any changes
to the shell environment will persist after the script finishes (for example, and
variables set in the script (§3.1.8) will still be set when the script finishes).

Regardless of the method used to run the script, any additional arguments
given on the command line are passed to the script to be used if desired (except,
in the case of my shell, if the method is sourcing, in which case additional
arguments are ignored, because I’m lazy).

3.1.8 Variables, parameters, and export

The ability to store values inside variables is one of the most basic features of a
programming language, and accordingly, shells generally provide this capacity.
The syntax for assignment is typically

$ varname=value
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where value is any string*. To “expand” a variable (that is, retrieve it’s con-
tents), the name of the variable is prefixed with a $, and optionally surrounded
by curly brackets ({}). For example, the following executes the command
"ls -l":

$ a=ls

$ b=-l

$ $a ${b}

Any environment variables that are set at the time the shell is launched
are generally set as variables in the shell so that they can be accessed on the
command line. So, for example, if I want to use the locations of the default
executable search paths in some command I just use $PATH.

Shell variables also provide the means to set environment variables in pro-
grams that are launched. This is accomplished with the built-in command
export. export takes as an argument the name of a shell variable and, as the
name suggests, “exports” it to the environment. So for example, if I issue the
commands

$ PATH=/bin:/usr/bin

$ some-program

I will not have changed the value of the PATH environment variable in some-program.
If, however, I do

$ PATH=/bin:/usr/bin

$ export PATH

$ some-program

I will have changed it.
Variables are in reality just a special case of so-called parameters. Non-

variable parameters cannot be assigned to like variables, but are accessed in
just the same way as variables. They fall into two categories:

i) Positional parameters

These parameters are just numbers (that is, they are accessed with $0,
$1 etc.). They hold the command line arguments which can be passed to
shell scripts, mentioned in the previous section (§3.1.7).

ii) Special parameters

The names of these parameters are non-alphanumeric, and they hold some
kind of useful information. I have included very few of these – in fact, just
two: $, which holds the process ID of the shell, and ?, described in the
next section (§3.1.9).

*in some shells it is set varname=value

13



3.1.9 if and while

The typical format of an if statement in Unix shells is

$ if CONDITION; then BODY; [else ELSEBODY;] fi

BODY and ELSEBODY consist of any number of semi-colon or newline separated
commands. The CONDITION is also a command. It may seems strange that a
command could represent a condition. This is possible because every executable
returns an integer called an exit status to the environment upon completion (this
is, for example, the use of value returned from the main function in C programs).
Similar to the way booleans are implemented in C – but reversed – a value of 0
is used to represent true, while a non-zero value is false.

Accordingly, it is convention for programs to return an exit status of 0 upon
“success” (whatever that may mean), and some non-zero value (often 1) upon
“failure”. As an example, I could use "ps | grep some-program" as my con-
dition, if I want some part of a script to run only if some-program is currently
running, because grep only returns success if it successfully finds the indicated
pattern.

if statements become particularly useful in combination with a standard
utility called test or [ (that is, the name of the command is the single character
‘[’). This is a program which can test a variety of conditions, and returns success
if the condition is true. These conditions can be certain assertions about files
(such as that a file exists, or is a directory). But more importantly, they can
be comparisons, such as the equality of two strings, or greater than or less than
between two integers. This allows us to use our shell variables. For example the
command

$ [ $a -gt 6 ]

will return success only if the variable a happens to hold a number (remember,
shell variables are strings) which is larger than 6. This allows us to use variables
to control the flow of a shell script, just like in “real programs”.

If the exit status of a program is not used as a condition, it is typically stored
inside a special shell parameter (§3.1.8) called ?.

The syntax for a while loop is typically

$ while CONDITION; do BODY; done

3.1.10 && and ||

Another way to make use of the exit status of commands is with logical ands and
ors. These allow you to run a command only on the condition that some other
command exits successfully (in the case of “and”) or unsuccessfully (in the case
of “or”). This is accomplished by placing a && or || between the two commands,
the second command being the one contingent on the first’s exit status. It may
not seem immediately obvious why this has anything to do with logical ands
and ors, but with some reflection, we see that this is just the same way in which
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short-circuit evaluation works in C and other languages. For example, given
some command such as

$ command1 && command2 && command3 && command4

each command will be evaluated until one exits unsuccessfully, at which point
the chain will stop. Since the exit status of the whole sequence is that of the last
command executed, this exit status will be success only if all four commands
are successful, and failure otherwise. Similar comments can be made for or.

So these can be used for “and”ing or “or”ing a bunch of commands in con-
ditions of an if or while, or – just as usefully – can be used as a shorthand for
simple (possibly nested) if statements.

3.1.11 for in

The for loop iterates a variable over a list of values and runs a body of com-
mands for each one. The syntax is typically

$ for VARIABLE in VALUE1 [VALUE2 ...]; do BODY; done

3.1.12 Command substitution

This feature is similar to pipes, and is extremely useful and powerful for the
same reasons. With command substitution, instead of piping the output of a
command into the input of another command, you put the output directly into
the line being entered into the shell. This is usually accomplished by surrounding
the “sub-command” with backticks (`). For example, if I wanted to give a time
stamp to the output file of some command, I could do so with

$ some-command > output-`date +%T`.txt

where date is a command which prints the current date and time according to
the given format codes.

3.1.13 Programmable prompt

It can often be nice to have some information in your prompt instead of, for
example, a boring old

$

Modern shells allow you to set the prompt to any string you like, by means
of a shell variable. Furthermore, one can put special codes within this string
which are expanded into different useful pieces of information, such as – and
these are the ones I have included in my shell – user name, host name, and
present working directory. See Appendix B for a little more on this.
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3.1.14 Miscellaneous features

The rest of the features I’ve included are too minor for their own sections, so
they’re all here.

If you want to type some string in your command and be sure that none
of it will be expanded or transformed in any other way by the shell, you can
surround it by single quotes ('). This is especially useful if you have some
argument which includes a space; if it isn’t surrounded by quotes, it will be
treated as two separate arguments.

There is another way to put spaces in an argument, and that is by escaping
them. This is accomplished by prepending a backslash (\) to the space. This
tells the shell to treat the space just as a character, and ignore its special
meaning of argument-separator. Other things can be escaped as well. If I put
a backslash before a quote, then I’ll just get the quote character, rather than
starting a quoted string. Newlines can be escaped, allowing a command to be
written across two lines. Dollar signs can be escaped so that they don’t indicate
a variable. Etc. Escaping a normal character has no effect.

Another option for putting spaces in arguments is double quotes ("). These
are similar to single quotes, except that they are, in a sense, less “strict”; what
this means is that certain types of expansions can still occur within double
quotes, while others cannot. Notably, variables and command-line substitution
can take place, and if the expansions have spaces, the whole thing is taken
a single argument, whereas normally it would be space-separated after being
expanded.

Lines can be commented out by starting them with a hash symbol (#). This
isn’t very useful when using the shell interactively, but can come in handy when
writing scripts.

If an argument is a lone tilde (~) or some path (that is, a slash (/) separated
list of strings) starting with a tilde and a slash, the tilde is expanded to the
current user’s home directory. This is useful because one spends a lot of time
in one’s home directory, and is a convenience Unix users are very used to.

That concludes the list of common shell features which I have included in
my shell. What follow is a list of certain nice features which I have shamefully
omitted, mostly out of laziness. This isn’t an exhaustive list of all the features
which modern shells have, as such a list would be practically endless. I have
only included those that I feel are most important, and that I am therefore most
embarrassed about having omitted.

3.2 Missing features

3.2.1 Command line editing

The ability to dynamically modify a line before you enter it is called command
line editing, and has become remarkably sophisticated over time. This is largely
due to the imitation in modern shells of the two canonical Unix text editors,
vi and emacs. Command line editing has been a pretty major part of the shell
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experience ever since it was introduced. It’s one of those things that you just
can’t do without once you have it.

I’ve failed to include it simply because its is too complicated (or, equivalently,
that I’m too lazy). Implementing command-line editing is a lot like building
an entire text-editor on top of your shell. Instead of just getting a line of
text from standard input, you have to handle each character of input yourself
and store it in a buffer which can be modified, and handle all the special key
bindings for movement and editing. Besides this, there are many terminal-
specific considerations and things of that nature. You need to find out what the
control codes are for moving the cursor around in different terminals and make
sure that the shell is portable etc.

I felt that tinkering with all that stuff, as interesting as it is, would be too
much of a digression from the main project, which is to build a shell.

3.2.2 Completion

This feature is really a part of command line editing, but it is so extraordinarily
useful that it deserves a section of its own. Completion is the ability of the
shell to complete a word which you are typing, typically by pressing Tab or
some other key sequence. The simplest example is just completing the name
of a file or a path. But completion can get arbitrarily complex by allowing
programmable completion via some kind of scripts. The options to any given
command can be arranged to be completed, with all the possible intricacies of
the syntax. If, for example, a program expects some option (-x or whatever it
may be) followed by an mp3 file, it could be arranged so that only paths to mp3
files will be completed after a -x. The script could even access some information
on-line and complete, for example, the names of packages to be downloaded from
a repository. The possibilities are endless.

Of course, it would be a nuisance if each individual user had to write each
of the completion scripts, but of course these things can be compiled and dis-
tributed, so that the end-user doesn’t have to know anything about the inner-
workings of the completion mechanisms.

3.2.3 Command line history

Command line history is the storage of the last however-many commands en-
tered. These can be accessed through key-bindings of the command-line editing
interface (often the up- and down-arrows, for instance), or through special se-
quences of characters. For example, an exclamation mark (!) followed by a
number typically expands into the line with that index in the history list. Mod-
ern history expansion is very sophisticated, allowing you to recall individual
words or group of words from any given line, optionally replacing a given string
with another one, and all sorts of other neat things.
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3.2.4 Globbing

Often, one wants to operate on a whole bunch of files, and it is tedious to name
each one of them separately on the command line. For this, special so-called glob
patterns can be used. In glob patterns, an asterisk (*) represents any sequence
of characters, a plus sign (+) represents any single character, and a question
mark (?) represents one or zero characters. So if one of the arguments to a
command is a*b?c, it will be expanded to all the files in the current directory
whose name is “a” followed by any (possibly empty) string, then a “b”, followed
one or zero characters, and then a “c”. This is a very hand and widely used
feature. I didn’t include it because by the time I thought of doing so, the word
expansion stuff was already written, and it would have been too complicated to
modify it to include globbing.

3.2.5 Job Control

Never mind those other features that I have expressed dismay at omitting. This
is the really important one. Job Control is the ability to run more than one
process at the same time from the shell. Such a thing appears trivial to users
accustomed to graphical environments, with many windows running different
programs. In the terminal, however, there is only one place whence to receive
input and whither to display output. The solution to this is to have, at any
given time, a single so-called foreground process, and zero or more background
processes. The foreground process is the one which receives the input from the
shell. By default, when you launch a program, it is the foreground process. But
any number of processes can be launched, instead, to the background. Moreover,
if a process is already running in the foreground, it can be “stopped” with a
special key sequence, at which point execution of that program is suspended and
the shell regains control of the terminal (when running programs in my shell,
typing such a key sequence has no effect). Thereafter, any stopped processes
may be made to continue running in the background, or any one of them can
be put in the foreground (typically with the shell built-ins bg and fg), or even
killed.

I have omitted this particularly important feature, again, because of laziness.
I would have had to deal with a lot of signal handling, and process and terminal
management, which I didn’t feel like doing.

3.2.6 Other features

The missing features I’ve mentioned here serve to paint a fairly good picture of
the amazing power of a real shell. On the other hand, I’m really just scratching
the surface.

There are a number of other features of varying utility that have become
standard in modern shells. In addition to that, each shell has its own non-
standard features, so that altogether the number of features in a modern shell
is truly overwhelming. If you’re interested, two of the most popular shells today
are bash (the bourne-again shell) and zsh.
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4 jojsh

The original Unix shell was called “sh”. It has therefore become a custom to
end the names of shells with “sh” (examples include csh, tcsh, ksh, bash, dash,
and zsh). Accordingly, given that I go by “Joj”, I have called my shell “jojsh”.

In this section, I will describe the implementation of my shell. This will
include describing the various components of its structure, and showing how
they are implemented. This will mean looking at some code. Sometimes I will
include the code directly, but sometimes I will just say the name of the function
and which file it’s in, and in such cases you are encouraged to “read along”
while I describe how the code works.

So, without further ado, let us see how a shell works.

4.1 Parsing

4.1.1 Grammars

Before anything else can happen, the first thing the shell must do is parse the
input. In order to accomplish this, we must first determine what kind of input
we will expect – or put another way, we must define the grammar of the shell. A
useful and common way of defining such a grammar is to think of the grammar
as a certain top-level structure consisting of certain sub-structures, which in turn
consist of sub-sub-structures etc. until at last you get to some basic “atomic”
elements. In English sentences, for instance, the top-level structure might be
sentence which might consist of subject, predicate, and period, the former of
which might consist of article, adjective, and noun. These last three (along
with period) would be the aforementioned atomic elements (called “terminal
symbols” in technical language).

There is a very convenient language that can be used to express these gram-
mars called Backus-Naur Form (or BNF for short). BNF consists of a series of
statements which look like

SENTENCE = SUBJECT, PREDICATE, "."

There is a popular program called yacc (“yet another compiler compiler”)
which takes as input a grammar definition in BNF and generates code to parse
such a grammar. But yacc expects as input the output from another function
called a lexical analyzer or tokenizer. This is a function which receives the
input, and splits it into “atoms”, which it sends one by one to the parser (in
the examples given above, this would involve maintaining a list of all English
adjectives and nouns and deciding which one each word is). There is also a
popular tool for generating such lexical analyzers, called lex.

Since it was my intention to build this shell “from scratch”, I haven’t used
yacc or lex, but instead wrote my own parser and lexical analyzer. This wouldn’t
have prevented me from first defining the shell syntax in a BNF, and using it to
write my parser, but as it happens, I didn’t do this, but instead “figured it out
as I went”. That said, there is a BNF grammar (in the world of ideas) which
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defines the syntax of my shell, and I have (approximately) reproduced it below,
in Figure 1. Note that square brackets ([]) indicate optional elements, vertical
bars (|) indicated “or”, curly brackets ({}) indicate repetition, and parenthe-
ses (()) are used for grouping; so the definition A = B, {C} | (D | E), [F]

means A consists either of a B and one or more Cs, or of a D or E, possibly
followed by an F. I should also note that this isn’t precisely BNF syntax (nor is
what I wrote above), but it comes to the same thing.

STMTS = STMT, STMT-TERMINATOR, [ STMTS ]

STMT = CMD-STMT | IF-STMT | WHILE-STMT | FOR-STMT | ASGNMT-STMT

STMT-TERMINATOR = { NEWLINE } | {";"}

CMD-STMT = { WORD }, [ REDIRECT ] [ ("|" | "&&" | "||"), CMD-STMT ]

REDIRECT = [ STRING ], ("<" | ">" | ">>"), WORD

WORD = { PIECE }

PIECE = STRING | DOUBLE | BACK | VAR

DOUBLE = '"', { WORD }, '"'

BACK = "`", STMTS, "`"

VAR = "$", STRING | "${", STRING, "}"

IF-STMT = "if", STMTS, "then", STMTS, [ "else", STMTS ], "fi"

WHILE-STMT = "while", STMTS, "do", STMTS, "done"

FOR-STMT = "for", STRING, "in", { WORD }, STMT-TERMINATOR, "do",

STMTS, "done"

ASGNMT-STMT = STRING, "=", WORD

Figure 1: Retrospective BNF

As I said, this is only approximately the syntax implicit in the program.
There are a few minor things that aren’t totally accurate (I mention, for ex-
ample, nothing about white space) but in general, it pretty much sums up the
syntax of the shell, and the way it is laid out here is for the most part reflected
directly in the implementation of the parser.

There a couple of things to note. One is the recursive definition of STMTS. I
could have equally used the repetition indicator ({}) to say that a STMTS is one or
more STMTs, but I put it like this because it more accurately reflects the actual
implementation. Similarly, I could have recursively defined something called
PIECES instead of having WORD, but the way it is done here – with repetition –
more accurately reflects the program.

The other thing to note is that there is no definition of STRING. This is
because it is an “atomic” element, and a definition would simply say that it
consists of a bunch of characters. (Strictly speaking, this isn’t really true, be-
cause STRINGs can be surrounded by single quotes, which allow them to contain
certain extra characters (such as " and $), so they do have some kind of internal
structure, but again, this isn’t a precise or formal grammar definition.)

20



STMTS

STMTS

STMTS

CMD-STMT

ARGUMENTS

...

FOR-STMT

VAR VALS

...

BODY

...

IF-STMT

CONDITION

...

BODY

...

Figure 2: Parse Tree

4.1.2 Parse Trees

Moving on to the actual implementation of the parser. The structure of this
kind of grammar lends itself very well to a tree of the sort illustrated in Figure 2.

Because each element of the grammar consists of a number of sub-elements,
we can think of each element as a node in this tree, containing all its sub-
elements as sub-nodes. The idea, then, is to parse the input and construct such
a tree. This would involve defining a struct for each type of element, whose
members are of the types of its sub-elements. These definitions can be seen in
the file parse.h.

The one problem with this is that a STMT, one of the elements of a STMTS,
isn’t a single type, but can be any one a handful of different types of STMTs (see
Figure 1). This would suggest an object-oriented approach, with an abstract
Stmt class, and several subclasses (IfStmt, ForStmt etc.). The problem is
that there is, of course, no such mechanism in C. Fortunately, one can use an
ingenious method to “fake” subclasses, which works as follows.

You define a “parent class”, which is a struct containing a single enum,
which in turn contains one value for each “subclass”. Each “subclass” has as
its first member that same enum. When an instance of a given “subclass” is
constructed, the enum field is set to the value corresponding to that type, and
then that instance is cast to the parent type. This newly cast object thus now
has the type of the parent, but it can still be identified by its enum and cast
back into its proper type when necessary. In our case, the enum is defined like
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this:

typedef enum {

ASGNMTS,

CMDS,

IFS,

WHILES,

FORS,

EOFS

} StmtType;

and the “parent class” is defined like this:

typedef struct {

StmtType stmttype;

} Stmt;

The definition of the IfStmt “subclass”, for example, is then

typedef struct {

StmtType stmttype;

Stmts *cond;

Stmts *body;

Stmts *elsebody;

} IfStmt;

(Notice the StmtType at the beginning of the struct.) A Stmts can now simply
contain a stmt:

typedef struct _Stmts {

Stmt *stmt;

struct _Stmts *next;

} Stmts;

4.1.3 Words and Pieces

Just as there are different types of Stmts, there also different types of Pieces.
But what is a Piece? Well, if we look back at Figure 1, we see that a Piece

is an element of which there are one or more in a Word, and is one of STRING,
DOUBLE, BACK, or VAR. A Word, in turn, is the element of which there are one or
more in a CmdStmt (and which appears also in other elements). So what do we
make of all this?

Well, we said that a command consists of one or more arguments, separated
by spaces; these are the Words. But each of these Words can contain certain
portions which will need to be expanded and transformed; Pieces serve as
these portions. A STRING is simply a plain string which does not need to be
expanded. VARs, DOUBLEs, and BACKs are, respectively, variables to be expanded,
strings surrounded by double quotes, and strings surrounded by back-ticks (for
command-substitution). If you look at their definitions in Figure 1, you will
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see that they correspond to the nature of these things (which are described in
§3.1.8, §3.1.14, and §3.1.12, respectively).

Pieces are then defined in the same way as Stmts; the type identifier:

typedef enum {

STRINGP,

DOUBLEP,

VARP,

BACKP

} PieceType;

the “parent class”:

typedef struct {

PieceType piecetype;

} Piece;

and the various “subclasses”, for example:

typedef struct {

PieceType piecetype;

Stmts *stmts;

} BackPiece;

I pointed out in §4.1.1 that the definition of WORD in Figure 1 used repetition
instead of recursion as in the definition of STMTS, and said that this was reflected
in the program. Well, here’s the proof:

typedef Piece **Word;

That is, Word is just defined as a list of Pieces. But this leaves the question
as to why it should be so defined. After all, I could have defined Word as follows:

/* NOT the definition of Word */

typedef struct _Word {

Piece *piece;

struct _Word *next;

} Word

which would have been analogous to the definition of Stmts shown above. The
reason I didn’t define it like this is that I felt that it would have been less
semantically accurate; whereas the thing following the first Stmt in a Stmts is
another Stmts in its own right, the thing following the first Piece in a Word

seemed to me be just a bunch of more Pieces and not a Word.
There is one final type of node in the tree, which is neither a Stmt or a

Piece. It appears only in CmdStmt and appears as REDIRECT in Figure 1. In
the program, the name of the type is simply Red.

Now I have described all of the nodes of our parse tree. From here, it is just
a matter of writing some code to build the parse tree out of the input, and then
some other code to interpret the parse tree and execute commands.
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But before we discuss either of these, we will make a slight digression, and
talk about the tokenizer.

4.1.4 The Tokenizer

As I mentioned in §4.1.1, the parser expects its input to come in neat little
packages called “tokens”, which represent the elements of the grammar. I also
mentioned that the input is split up into these tokens by a lexical analyzer or
tokenizer, and that I have written such a thing. I will describe it here. The
tokenizer resides in the files token.c and token.h.

The tokenizer is pretty much a single function, called getToken(), whose
return type is an enum called TokType which containing an entry for each token
which can be returned. It takes a char ** as an argument, where it stores a
string containing the token itself. For some TokTypes, such as WHILE, THEN,
PIPE, etc. this information is redundant, because the token is a specific string;
but in certain cases (most significantly for WORD), the string needs to be examined
further.

The way the tokenizer works is pretty straightforward and ugly. It simply
works through the input, character by character, until it figures out definitively
which token is the next one. For several tokens, this can be determined after
checking only or two characters (namely, the TokTypes SEMCOL, a semicolon;
PIPE and OR, one or two vertical bars; NL, a newline; RED, one or two angle
brackets (for redirection); and AND, two ampersands). If one of these tokens is
not matched, the tokenizer continues to get characters until a token-terminating
character is met; this is either a space or one of the above mentioned characters.
The string thus obtained is then compared to each of the “string-like” tokens
(if, done, etc.), and the appropriate TokType is returned. If the string matches
none of these, then WORD is returned.

This covers most of the functionality of the tokenizer, but there are a couple
of other things that it has to deal with. One is quoted strings. The tokenizer has
an internal state stored in the variable QUOTECHAR, which is defined as follows:

enum { NONE = 0,

DOUBLE = '"',

SINGLE = '\'',

BACK = '‘'} QUOTECHAR = NONE;

As you can see, QUOTECHAR is initialized to NONE, indicating that the tokenizer
is not currently “inside” any quotes. If the tokenizer meets any of the three
quote characters while its in the NONE state, it changes the value of QUOTECHAR
appropriately. The effect that this has is that the tokenizer no longer ceases
to get characters when it meets a token-ending character, but rather continues
until it finds the matching quote character, at which point it sets QUOTECHAR

back to NONE and resumes normal operation.
Another special case that the tokenizer has to deal with is assignments.

Assignments, remember, are of the form variable=value (§3.1.8). Therefore,
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the first thing which the tokenizer checks, when its determining which “string-
like” token it has found, is whether the string contains a = character. If it does,
and all the characters preceding the = meet the criteria for allowable variable
names, ASSGNMT is returned.

Another somewhat complicated special case is redirects. Recall that the
angle brackets in a redirect can have a number prepended to them in case you
want to indicate from (or to) which file descriptor you want to redirect (§3.1.5).
Therefore, if the token-terminating character that stopped the tokenizer was
one of the angle-brackets, it adds the bracket to the string, and returns the
whole thing as a RED instead of a WORD.

It should be noted that if the token-terminating character is not an angle-
bracket, then the tokenizer has taken one character too many, and must “put
one back”. Fortunately, there is a function ungetc() which allows you to do just
this – that is, push a character back to be gotten in the next call the getchar().
If you look at the code for getToken(), however, you will notice that I don’t use
ungetc(), nor do I use getchar(). Rather, I use two functions which I defined
myself, called getch() and ungetch(). The reasons for this will be discussed
in the next section (§4.1.5).

Two final small things the tokenizer must take into account are comments
and escaped characters (§3.1.14). Comments are easy; if the first character of
a token is a hash symbol (#), the tokenizer gets the rest of the line, ignores it,
and returns NL. If a hash symbol is met elsewhere, the rest of the line is gotten
and ignored, and then the final newline is “ungotten”. Escaped characters,
remember, are prepended with a backslash (\). So to take care of these, every
time the tokenizer meets a backslash, it simply adds the following character
to the token string, eliminating the possibility of the tokenizer reacting to any
special meaning that character might have.

Just as characters can be pushed back on the input stream with ungetc(),
this tokenizer allows you to push back tokens in case you took an extra one. This
is accomplished with the function ungetToken(), which takes as arguments the
TokType and string corresponding to the token to be “ungotten”. It stores these
in two static variables called backtok and backstr. The first thing getToken()

does, then, is to check if these variables have anything in them, and if so, it just
returns their contents instead of getting another string.

I have now described more or less completely how getToken() works; but
this is not the whole tokenizing story.

4.1.5 Second-pass parsing

The function getToken() returns as one of its TokTypes a token called WORD; no-
tice that it doesn’t return any Toktype called PIECE. Since each WORD is made of
one or more PIECEs, the WORDs returned by getToken() must be tokenized again
(into pieces); moreover, getToken() isn’t able to do it, because it only parses
into WORDs. There is therefore another function, simply called getToken2(),
which is very similar to getToken(), except it differs in the details of its tok-
enizing.
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This also brings to light the purpose of the functions getch() and ungetch()

mentioned in the previous section (§4.1.4). When you call getToken2(), you
don’t want it to get its input from standard input; rather, you want it to get
it out of some string – that is, whatever word you want it to tokenize. The
functions in the file dyninput.c provide this functionality with a transparent
and consistent interface (that is, getch() and ungetch() work the same way
regardless of what’s going on underneath). Along with the two previously men-
tioned functions, there are two other functions in this file called inputString()

and restoreInput().
inputString() takes as arguments the string which you want to set as the

source for getch(), and the length of that string. It returns a structure called
Source which is defined in dyninput.h. The definition looks like this:

typedef struct

{

int len;

char *str;

char ungot;

} Source;

Hopefully, this is pretty self explanatory. str holds whatever string is associated
with this source, and len indicates the length. As you get characters, the pointer
str steps along the string, and len is reduced. When len gets to 0, EOF is
returned. ungot, of course, stores the character ungotten with ungetch().

The source returned by inputString() is the current source. Whoever
called it is then supposed to back it up somewhere, and when the newly inputted
source is finished, the old one is restored with restoreInput(), which takes
a Source as an argument. In the file dyninput.c, there is, naturally, a static
Source * variable called current, which points to the current source, and which
is initially set to NULL. The first caller of inputString will therefore get NULL

as a return value, and will supply the same to restoreInput(). Whenever
current is set to NULL, getch() simply calls getchar(), and ungetch() calls
ungetc().

So the sequence of actions for second-pass tokenizing is i) input the word
to be tokenized with inputString() (storing the returned Source somewhere);
ii) tokenize it with getToken2(); and iii) restore the old input source with
restoreInput(). All that said, the functionality of getToken2() is really very
similar to getToken(). It returns a different set of tokens, and the way it
handles quotes is a little different, but its not worth explaining. Look at it
yourself if you’re interested.

4.1.6 The parser functions

With the tokenizer in place, writing all the parsing functions is fairly straight-
forward. We won’t look at all of them, because some of them are quite similar,
but we’ll look at a few to get a feel for how they work.
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Each parser function has a name like parseStmts(), parseCmd() etc. and
they parse the upcoming input and return a Stmt (or Piece) object of the type
corresponding to whatever they are supposed to parse. Most of the time, one of
these functions is called by another parseX() function, and the returned node
will be entered into the X which parseX() is parsing. The one exception is the
root of the tree, returned to the main loop from the first call to parseStmts(),
which is then given to runStmts() and cleanStmts() (§4.3 and §4.4).

These functions are defined in the file parse.c and the many data types
which they depend on are defined in parse.h.

4.1.7 parseStmts()

Let us start off by looking at parseStmts(). Remember, this is the function
which, if we call it at the beginning of the input, should return to us the whole
upcoming series of commands in the form of a parse tree. parseStmts() takes
two arguments, an int called body, and an int * called err. The first of these
is really just a boolean, indicating whether the Stmts to be parsed is inside the
body of some construct (like an if or for). We’ll see what this is used for soon.
The second is actually also a boolean, and is used for error reporting; if anything
goes wrong in the function, *err is set to 1, and then the calling function will
know something went wrong. We’ll see that many functions in the program use
this.

The first thing that happens in the function – like in all of the parser func-
tions – is the allocation of the node in question:

stmts = malloc(sizeof(Stmts));

Now, a Stmts node is supposed to contain two things: the first Stmt, and
another Stmts node containing all the rest of the Stmts. To get the former,
we’ll have to call the parser function for whatever the upcoming Stmt type is.
We can figure out which type it is just by getting the first token:

switch (tok = getToken(&str)) {

If, for example, the token is an IF, we know we want to run parseIf() and so
on. If we look inside each case:, we see that they almost all have a statement
of the form

stmts->stmt = (Stmt *) parseIf(err);

as we might expect. We see the cast to (Stmt *) as explained in §4.1.2; we cast
it to an object of the “parent class”, and we can cast it back later on using the
contained StmtType. In the case of IF, we also see a

free(str);

This is because we know what the string of this token is (“if”), and so having
no use for the information contained in that string, we free the memory (this
implies that getToken() leaves it up to the calling function to free the space
allocated for the string – which is indeed the case). In other cases, like for RED

and WORD, str is not freed., but rather we see a
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ungetToken(tok, &str);

This is because the contents of the token are useful, so the token is ungotten
to be used by the subsequently called parser function.

There are a couple of other special cases. One is SEMCOL (semicolon). The
code for this case is

free(str);

free(stmts);

return parseStmts(body, err);

This makes sense. A semicolon is never the first token of a Stmt; rather it
indicates that whatever comes after the semicolon is the next Stmt. So instead
of returning the currently allocated Stmts as we normally do, we get rid of it
and simply call parseStmts() again, which will get the following Stmt.

Another special case is NL (newline). Now, you might expect this to do
the exact same thing as with a semicolon – that is, simply move on and get
the statement following the newline. But in general, the user expects the typed
commands to execute after each line. So when getToken() returns an NL, NULL is
returned, indicating the end of the Stmts. If, however, body is set to true (non-
zero), then all the statements up to the closing token of the body should be
executed, and so NL is indeed treated as a statement separator just like SEMCOL,
and similar actions are taken. The difference here is that extra input may be
required; if the input is coming from a file, then the next line will be readily
available, but if the shell is interactive, the user will have just typed a newline,
and must type the following line. The only difference that this makes is that we
must present the user with a prompt. This is accomplished as follows:

if (INTERACTIVE) {

fprintf(stderr, "%s", parsePrompt(getvar("PS2")));

}

return parseStmts(body, err);

Here we see four things that we haven’t seen. The first is INTERACTIVE. This is a
global variable which is set at the beginning of the program, and which indicates
whether the shell is in interactive mode. Next, getvar(), as you might guess, is
a function which returns the value of the given variable. PS2 is the name of the
variable which stores the special prompt meant for just this purpose (PS1 stores
the normal prompt). Finally, parsePrompt() is the function which expands all
the special prompt features and returns the final, fully beautified prompt (see
§3.1.13).

Similar to NL are the cases THEN, ELSE, FI, DO, and DONE; these indicate the
end of a Stmts, though while NL is for a single-line command, these all indicate
the end of bodies. Therefore, if body is set to true, these have the same effect as
a NL has when body is false. If body is false, then these tokens are unexpected,
and it falls through to the default case, which gives the user an error message,
sets *err = 1, and ends the Stmts with a NULL.
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Another special case is EOFT. This is a tokType so far unmentioned, which
getToken() returns when it meets an End Of File. Let us look at the code for
this case:

free(str);

stmts->stmt = (Stmt *) EOFStmt();

stmts->next = NULL;

return stmts;

Here, the list of statements is closed and returned, just as with NL and the body-
enders, except that the last Stmt is made an “EOFStmt”. An EOFStmt is a node
with nothing it except the StmtType identifier, which contains the value EOFS.
Its purpose is simply to indicate that the input is completed after the previous
statement; that is, if one of these is reached while running statements, the shell
exits.

After the appropriate statement type has been determined and stmts->stmt

has been filled, the function ends with

stmts->next = parseStmts(body, err);

return stmts;

which I hope is self-explanatory.

4.1.8 parseCmd()

I hadn’t realized how tedious it would be to describe one of these functions, so
I’ll try to do as few as possible. It should be easier now that we’ve seen the
basic elements of the parser function.

parseCmd() is particularly important, because as we both know, the shell is
really all about running commands. The contents of a CmdStmt are as follows:

typedef struct _CmdStmt {

StmtType stmttype;

Word *args;

struct _CmdStmt *next;

enum {PIPEN, ANDN, ORN} nexttype;

Red **reds;

} CmdStmt;

Pretty serious node! next is the command, if any, to be piped into or to be
executed conditionally on this command’s success or failure. nexttype says
which of these three, if any, is the case. The last entry is the list of all the
redirections to take place on this command (since there can be any number).

The first thing that happens in parseCmd(), just like in parseStmts(), is
the allocation of the node. The next thing that happens, however, is very
important and characteristic of all the parsing functions except parseStmts()

(and parseWord()): the stmttype of the newly allocated stmt is set (in this
case, to CMDS). This is so important because, after this CmdStmt is casted to a
Stmt, this will be the only thing making it a CmdStmt at all.
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Next, the function goes through getToken()’s until it gets to a SEMCOL, NL,
PIPE, AND, or OR (any of the things that mark the end of a command). Each
token thus obtained is then switched. If it is a WORD, this very exciting line is
executed:

cmdstmt->args[argc++] = parseWord(err, str);

That is, the next argument in this command is set to the obtained string, after
being parsed into a Word (which, as we remember, consists of one or more
Pieces, §4.1.3). We’ll look at parseWord() shortly (§4.1.9). The other case is
if the token is a RED, in which case we have the very similar

ungetToken(RED, &str);

cmdstmt->reds[redc++] = parseRed(err);

I will not go into the details of parseRed(), though it is kind of interesting.
Suffice to say that it figures out what kind of redirection it is, and from which
file descriptor and to which file or file descriptor it’s happening (§3.1.5), all of
which information it encapsulates in a nice Red structure which it returns.

Note that parseWord() takes a string as an argument, rather than having
the thing ungotten only to be gotten again. This is the case with those parsing
functions where all the parsing is to be done on a single token.

After that, parseCmd() checks to see if the next token is a pipe or a && or
||, and if so sets nexttype appropriately and calls parseCmd() again (storing
the returned cmdStmt in next).

Finally, it ends with the usual

return cmdstmt;

4.1.9 parseWord()

parseWord() is quite like parseStmts(), in that its only job is to figure out
which kinds of things need to be parsed, and to call the appropriate functions.
A significant difference, however, is that all the Pieces are contained in a single
word (see §4.1.3), so that parseWord() doesn’t call itself recursively to get each
Piece, but rather loops through and builds up the list of Pieces all at once.

Another important difference is this pair of lines which appear at the begin-
ning and end of the function:

bu = inputString(s, strlen(s));

/* ... */

restoreInput(bu);

This is the switching of input described in §4.1.4. bu is, of course, declared as
a Source *.

Beyond this, the functionality is pretty much identical to parseStmts(); for
every token parseWord() receives, it checks which kind of token it is, calls the
appropriate parsing function, and stores the returned Piece as the next piece
in the Word which is being built.
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The function parseDouble() which parses strings enclosed in double quotes
(see §3.1.14) is almost identical to parseWords(). After all, a string in double
quotes contains strings that may need to be expanded, so it is in reality just a
series of Pieces; the only difference is that certain characters – in the case of
my shell, only spaces and tildes – are not treated specially. Also, things that
are expanded should not be space-separated into different arguments, but this
doesn’t require any work from the parser – rather, the simple fact that it is a
double piece, and not a word, causes the splitting to be disabled when expansion
time comes (§4.3.1).

There’s one other piece-parsing function I would like to look at, because it’s
particularly interesting.

4.1.10 parseBack()

This function parses a string surrounded by back-ticks, which, as you remember,
is replaced by the output of whatever command it contains. (§3.1.12). This is
a fairly short function. The meat of it is in these lines

/* need to get rid of surrounding quotes */

bu = inputString(strdup(str + 1), strlen(str) - 2);

backpiece->stmts = parseStmts(1, err);

restoreInput(bu);

Here, we see another use of inputString() besides parsing Words. The comment
refers simply to the +1 and -2 in the code, which serve to remove the back-ticks
appearing at the beginning and end of the string.

Once we’ve removed these, what’s left is a string consisting of one or more
commands; or, in other words, a Stmts. So we simply set that string as input
using inputString() and then parse it with parseStmts(). That’s it!

Nice!

The other parsing functions work pretty much according to the same prin-
ciples as the ones I have shown already. Each has its little quirks, but you can
basically guess what each does from the fields contained in the corresponding
node type.

So now we’ve parsed our input! We’ve built our parse tree, and all we’ve
got to do is run it! Before we get to that, however, I would like to make a small
digression.

4.2 Variables

In this section, I will describe how shell variables are stored and retrieved in the
program. The functionality described here will be used in the running functions
in the next section, so it is good to see how it works here first. All the variable
stuff can be found in the file variables.c (there’s also a file called variables.h,
but this just contains a few function prototypes to be included in other files).
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The two most important functions in variables.c are getvar() and setvar().
The first of these we have already seen in §4.1.7, where it was used to retrieve
the value of the variable PS2. Both of these functions make use of a hash table
(see Appendix C). They are quite simple. setvar(), which takes two string
called var and val as arguments, checks if the entry var is already in the table,
then sets it to val if it is there or makes a new entry if it isn’t. getvar() takes
one string, var, and returns the value contained in the entry var if it exists,
and returns an empty string otherwise.

But there are a couple of other interesting functions in this file. One is called
loadenv(), and it looks like this:

void loadenv()

{

char **env = environ - 1;

char *var, *val;

while (*++env) {

var = *env;

val = *env;

while (*++val != '=');

*val = '\0';

setvar(var, val+1);

*val = '=';

}

}

The purpose of this function is to store all currently set environment variables
as shell variables (see §3.1.8). This function is called just once at the beginning
of the program. The variable environ is a global char ** variable declared in
the file unistd.h. The C run-time environment sets this variable to the list of
all the variables in the environment and their values (in the form VAR=VAL). The
function is pretty self-explanatory.

The last function in this file is parrsePrompt(), mentioned in §4.1.7, which
parses the special programmable prompt strings and returns the expanded
prompt. This isn’t all that interesting; it just goes through, expanding the spe-
cial codes when necessary with getlogin(), gethostname(), and getcwd(), all
of which are standard library functions declared in unistd.h. See Appendix B
for a little more on this.

4.3 Running

Now that we’ve got that over with, we can move on to the most exciting part
of the shell – actually running the commands! All this stuff is in run.c.

For each of the parseStmt functions, there’s a corresponding runStmt, and
for each of the parsePiece functions, there’s a corresponding expandPiece.

The initiator of the whole process is, unsurprisingly, the function runStmts,
which takes a Stmts as an argument. It is exceedingly simple. All it does is
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check the StmtType of the Stmt which is in the supplied Stmts, give that Stmt
to the appropriate runStmt function, and finally return with

return runStmts(stmts->next);

Just like parseStmts(), then, it calls itself recursively until it has gone through
all the statements. The return type of this function is an int. Since it returns
the result of a recursive call to itself, the value is of course determined by
whichever runStmts() receives the end of the list. When this happens, it can
return two possible values. If the list ends with a NULL entry, 0 is returned. If
the list ends with an EOF statement (see §4.1.7), it returns 1. This way, whoever
calls runStmts() can know whether an End Of File has been reached (in which
case the shell should exit), or whether there’s still more statements to be parsed
and run.

Of course, the most interesting function that runStmts() calls is runCmd().
We will see how this function works in a moment, but first we will look at its
first line:

argv = expandWords(cmd->args, 1);

4.3.1 expandWords()

The first thing that runCmd() does is call expandWords(). It should be noted
that the variable argv above is a char **. expandWords(), then, takes a list
of Words, expands all the Pieces, and then returns the expanded list as normal
strings. The second argument simply indicates whether word-splitting should
take place (its set to zero when expandWords() is called by expandDouble()).

This function is to parseWord() what runStmts() is to parseStmts(); it
is the function which calls all the other expandPiece functions.

The way this function works is as follows.
First, it allocates a single buffer where it will store all the expanded words.

It then loops through each Word in the list supplied to it. For each word,
the index of the current position in the buffer – that is, the place where the
word will be stored – is added to an array of integers called expandedidxs.
Then, it loops through each Piece in the current word. Based on what’s in the
piecetype field, it calls the appropriate expandPiece function (each of which
returns a string), and appends the returned string onto the big buffer. Then,
space-separation takes place if necessary (that is, if the piece was a back-tick
quoted string or a variable, but not if it was a plain string or a double-quoted
string). Space-separation works as follows.

It goes through the buffer character by character, starting at the beginning
of the piece which is being split, and if it sees a space, it does two things. First,
it replaces the space by a null byte (ie. a string terminator). Then, it adds the
index of the following character to expandedidxs.

This process continues through all the Pieces and all the Words, until finally,
it ends up with a big buffer with all the expanded and separated strings, along
with a list of indices into that buffer where each separated string starts. Then,
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an array of char *’s, called expanded, is built up by taking a pointer to each
position in the big buffer which is referred to in expandedidxs. It is finally this
list of strings – that is, expanded – which is returned.

There are a couple of questions to be asked here. The first is, why copy all
the strings into this buffer? Why not just build expanded directly out of the
strings returned by the expandPiece functions? This is not hard to see: the
reason is that we can’t know beforehand how many arguments will be contained
in a given Piece or, alternatively, how many Pieces will be in a given argument.
The only way to resolve this is to concatenate them all, and then separate them
afterwards.

The next question is, given that we are using this big buffer approach,
what’s with this strange process of first building a list of indices, and then
finding the corresponding pointers afterwards? Why not just gather the point-
ers for expanded at each juncture where indices are now being gathered for
expandedidxs? This is a subtle point. The reason is that the buffer is contin-
ually being reallocated in order to make it bigger and fit more strings. When
realloc() is called to do this, there’s no guarantee that the buffer will be in
the same place. So if pointers to within the buffer are taken during the process,
there’s a good chance those pointers won’t point anywhere useful by the time
it’s over. The present system only gets the pointers after the buffer has been
reallocated for the last time.

I only want to look at one of the expandPiece functions, because it is quite
neat.

4.3.2 expandBack()

You’ll recall that the contents of back-tick quoted strings are supposed to be
treated as commands to be run and replaced by their output (§3.1.12). A
backPiece() in fact, just contains a single Stmts. What expandBack() does,
then, is as follows. First it opens a new pipe. It then closes standard output,
and sets it to the write-end of the pipe (via dup(pipefd[1]), see §2.6). Then
it calls runStms() with back->stmts, which will run the commands and write
all the output (unwittingly) into the pipe. Then, it just calls read() on the
read-end of the pipe, storing the results in a buffer, until it reaches an end of
file, at which point it restores the old standard input, and returns the buffer.
That’s it!

Nice!

With expandWords() in place, runCmd() can expand the Words contained
in the CmdStmt, and get a regular old list of arguments in the form of strings.
Let’s see what it does next.

4.3.3 runCmd()

Let us quickly recall what this function is supposed to do; well, obviously, it runs
whatever command is contained in the given CmdStmt, but what does that entail?
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The command may be a built-in command, in which case whatever actions are
supposed to be performed should be performed. Otherwise, the command is an
executable to be run. Additionally, all indicated redirections must be performed,
and the output possibly must be piped into another command. Also, upon
completion there’s a chance that another command will have to be run (because
of a && or ||). So, let’s see how this is done!

Recall that we’ve already looked at the first line, which expands all the
words. Now we have a nice, simple, NULL terminated list of strings representing
the arguments to the command. The first thing that happens is that the first
argument is checked to see if it is one of the built-in commands, which include
cd, exit, export, and source (or “.”).

If it’s cd, then the second argument is supplied to the standard library
function chdir().

If it’s exit, the shell simply exits with exit(0).
If it’s export, we recall that this indicates that the following arguments are

variables that should be exported to the environment. This is done simply by
retrieving the value of the variable with getvar() and then calling setenv()

(another standard library function), which takes two arguments (variable and
value).

The last built-in command is source. This command says that the supplied
file should be read, and all the commands therein should be run. This pretty
much means running jojsh all over again; indeed, the code for this command
is almost identical to the main loop of the program. But since I’m saving the
main loop for the end, I won’t say any more about this.

Now we move on to running executables. The way this is basically done –
using fork() and exec() – was already outlined in §2.5.

To get an idea of how it works when multiple pipes are involved, refer to
Figure 3. In this diagram, each large box represents a process. All the boxes on
the left (containing “jojsh”) are the same process – although those connected
by solid arrows are in different stack frames – whereas each box on the right
is a separate process. The small white rectangles represent the terminal, while
matching colored rectangles represent both sides of the same pipe. The rect-
angles which are on top and underneath a given box are standard input and
standard output, respectively.

What is depicted is the running of a pipeline including four commands.
The process starts with the box on the top left(1), which is jojsh running

runCmd(). The first thing it does is open the red pipe. It then forks, producing
the process on the top right (i), which inherits its pipes, as is always the
case with forked processes. This process closes one end of the pipe, and sets
the other end as standard output. Then, it calls exec() with the list of strings
args which was returned from expandWords().

In the meanwhile, jojsh (A), closes one end of the red pipe, and sets the
other end as standard input. Then, it calls call runCmd() with cmd->next –
that is, the next command in the pipeline – as an argument. This next instance
of runCmd() (2) opens the blue pipe. It then forks, creating the process to the
right of it. Not only does this process (ii) inherit the blue pipe, it also inherits
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Figure 3: Running programs with pipes

standard input and standard output – as is always the case with forked processes
– which are the red pipe and the terminal, respectively. It then closes one end
of the blue pipe blue pipe, and sets the other end as its standard output. Then
it calls exec() again, with the next program. Thus, the processes (i) and (ii)
are connected by the red pipe, which is the effect we wanted.

In the meanwhile, jojsh (2) closes one end of the blue pipe, sets the other end
as standard input (B), and then calls runCmd() again with the next command
in the pipeline; and so the process repeats again.

The fourth instance of runCmd() (4) sees that cmd->next is empty – that is,
that this CmdStmt is the last one in the pipeline – so it does something different.
First of all, it doesn’t open any new pipes. Then, after it forks, the forked
process (iv) also sees that there’s no next command, and so it doesn’t change
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its standard output, but leaves it rather as the terminal. Then it calls exec()

as usual.
Meanwhile, jojsh (4) – since it doesn’t have any next command to run,

executes the system call waitpid() with the process ID of (iv) as an argument.
This results in jojsh hanging until (iv) exits, at which point the exit status
– among other information, which is discarded – is returned, which runCmd()

saves in the variable ? with setvar(). Then (and this isn’t indicated in the
diagram), runCmd() (still (4)) calls wait() – another system call – repeatedly,
which causes it to hang until all the other child processes are also finished. Then,
(4) returns.

The next thing that happens also isn’t shown in the figure: the previous
instance of runCmd() (C), after the runCmd() which it called (4) returns, changes
the standard input back to what it was before – the blue pipe. Now, this doesn’t
actually have any positive effect, but every instance of runCmd() does this, so
(B) changes the input back to the red pipe, and then – and this does have a
positive effect – (A) changes it back to the terminal. The positive effect in
question here is restoring the input back to the terminal, which is where we
want it to be.

This is the essence of how running programs works. Of course, if there is no
pipeline at all, but rather just a single program, this is equivalent to a reduced
version of Figure 3, with only boxes (4) and (iv). There are some small details
in runCmd() involving process groups, but I haven’t mentioned anything about
those, nor do I want to, so I won’t say anything more about that.

I will, however, say something about a couple of other details of runCmd()
which are to do with redirecting and the && and || operators.

The way redirection works is pretty straightforward: before each child pro-
cess (the roman numerals in Figure 3) calls exec(), it checks to see if there is
anything in cmd->reds (which you’ll remember is of the type Red **, §4.1.8),
and if there is, loops through each Red therein. For each one, it calls close()

on the file descriptor which is being redirected, and then calls open() on the
specified file, or dup() on the specified file descriptor (see §3.1.5). After it has
done this for each Red in reds, it goes on to execute the program.

Just before the end of runCmd() – that is, after everything that happens in
Figure 3 – there is by this time a value store in the variable ? – namely, the exit
status of the last program in the pipeline ((iv) in the diagram). Depending on
the value of this variable, and on whether cmd->nexttype is ANDN or ORN (or
neither), runCmd() may or may not call runCmd() again, with cmd->next as an
argument.

That’s it! We can now run commands, which is what we came here for.
The other runStmt() functions aren’t all that interesting. Briefly, runIf() and
runWhile() use getvar("?") to decide whether they should call runStmts()
on the contents of their bodys, runFor() calls setvar() and runStmts() over
and over, and runAsgnmt() pretty much just calls setvar().
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4.4 Cleaning

After that exciting thrill ride, we now move on to what is by far the most
boring part of the program – cleaning up. What cleaning up, you ask? Well, as
I mentioned in §4.1.7, getToken() leaves it up to the caller to free the memory
allocated for the returned string. Therefore, there are a bunch of pointers to
malloc()’d memory dispersed all around the parse tree, and this needs to be
freed. Besides this, there are the nodes themselves, which have been allocated
and are equally spread around the tree.

To free all this memory, then, we just descend into the tree in the same
manner as we did for running and parsing. That is, for every parseX and
runX (or expandX), there is also a cleanX, and they again all call each other
recursively like crazy. These functions are contained in the file clean.c. I will
not say much about these functions, because they are pretty obvious. All they
do is call the appropriate other functions (cleanStmts() for example, will call
any one of the cleanStmt functions, depending on the value of stmttype), free
any char *’s they might have, and then free whichever node they’ve been given.

4.5 The main loop

Now we finally get to see it all come together.
The main() function is located in the file jojsh.c. The first thing it does

is check to see if there are any command line arguments. If there are, it closes
standard input, and tries to open the file indicated by the first argument (§3.1.7).
If this is successful, then argv is incremented by 1, and argc is decremented by
1. This, of course, shifts the command line arguments by one, and the purpose
is to ensure that references to positional parameters (§3.1.8) in the given shell
script will point to the correct arguments.

Next, we set the external variable INTERACTIVE, mentioned in §4.1.7 and
used throughout the program, which indicates whether the user is interacting
with the program, or a script is being read. It is set like this:

if (isatty(0))

INTERACTIVE = 1;

isatty() is a standard library function which tells you whether the given file
(standard input, in this case) is a terminal. INTERACTIVE is by default set to 0,
so it will only be set to 1 if the input is coming from a terminal, which is what
we want.

Then the environment variables are loaded with loadenv() (§4.2), and any
special parameters (§3.1.8) are set, including $ (using the system call getpid()),
the positional parameters, and the default prompt strings in PS1 and PS2.

Then we begin the main loop. I’ll reproduce it here in full, because it is
fairly short.

while (1) {

if (INTERACTIVE) {
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fprintf(stderr, "%s", parsePrompt(getvar("PS1")));

}

err = 0;

stmts = parseStmts(0, &err);

if (! err) {

if (runStmts(stmts))

break;

} else {

char *str;

/*in case of error, chomp rest of input,

or give up if we're not interactive */

if (INTERACTIVE) {

while (getToken(&str) != NL)

free(str);

} else {

break;

}

}

cleanStmts(stmts);

}

This is pretty straightforward. I’ll leave it as an exercise to the reader to figure
out what’s going on. (Just remember that runStmts() returns 1 if it ends in
an EOF and 0 otherwise, §4.3).

5 Concluding remarks

I have now written a Unix shell. If I wish, I could replace the shell I use normally
(bash) with jojsh, and use it for all my shelling needs. Of course, I won’t do
that (yet), because I would feel utterly crippled by the lack of features, but the
point is that I could.

And this fact demonstrates a very important and beautiful aspect of the
Unix operating system: its transparency. The shell is a significant part of the
Unix experience, and it can quite easily be implemented and replaced, because
it is totally clear and known exactly what it does.

We could continue to do this, implementing and replacing little bits of Unix
at a time, until nothing is left but what we’ve written ourselves (admittedly,
certain parts – the kernel, for example – would be more difficult than others,
but even this has been done, Linux being an example of just that).

Its likely, in fact, that this very openness is what has fuelled the development
and gradual improvement of Unix shells toward the greatness they have today.
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A Device Files

In §2.3 and §2.4, I make reference to special “device files” which communicate
with devices when read from or written to.

I explained the strange concepts of “standard output” and “standard input”
as simply being the device file representing the terminal. But what is this file,
and how does it manage to do anything?

Well, each device file has associated it with it two numbers called the major
number and the minor number. The major number indicates what kind of device
it is. To make a new device driver on the system, I register one of these major
numbers. This consists of writing a bunch of functions which correspond to the
different file operations. That is, I write a function for what to do when the
device is opened, read from, written to, etc. The content of these functions is
all the nitty-gritty low-level device stuff, like writing to the appropriate memory
locations which are mapped to the ports of interest.

When I write to a device file, then, the system just checks what the major
number is, and calls the corresponding function. The minor number is just a
number which is passed to these functions. These can be used for a variety of
purposes. A common example is if there’s more than one instance of a particular
device, the minor number will indicate which device it is (which means there
will be one device file for each of these devices, since every device file has its
own minor number).

We can see that these device files can not only write and read from hardware,
but do just about anything, since I’m allowed to assign pretty much arbitrary
functions for the various file operations associated with a major number (in fact,
they’re not really called “device” files at all, but rather char or block files). An
example of this, in fact, is the one I gave in §2.4: virtual terminals. There, I
very mysteriously said that a virtual terminal device file just sends and receives
data to and from another process. Well, I still won’t go into the details of how
this works (though it is quite neat), but hopefully this isn’t so hard to believe
now, given that any old code at all can be run when writing or reading to and
from a device file.

B Programmable prompt codes

In §3.1.13, I mentioned that there are certain special prompt codes which can
be put in the prompt string to be expanded to some useful information. The
nature of these codes doesn’t seem to be standardized or consistent from shell
to shell, so I didn’t want to mention it in the section about programmable
prompts and give the false impression that the specific codes were as standard
as the feature itself is. I’ve therefore included them here, so that they wouldn’t
be undocumented. In my shell, I only have 4 codes, and they correspond to the
ones used in bash, which is the default shell in Linux, and the one which I use.

Note that for the last two, if the current directory is the home directory (or
a sub-directory thereof, in the second case), it is abbreviated with a tilde (~).
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Table 1: Programmable prompt codes
Code Meaning
\u Username of current user
\h The hostname of the machine
\W The basename current working directory
\w The full path to the current working directory

I also failed to mention in §3.1.13 the names of the shell variables which
store the prompt strings (though these are mentioned elsewhere in the text).
The main prompt is stored in the variable PS1. A secondary prompt string,
for multi-line input (like in the body of loops), is stored in PS2. I presume
PS stands for prompt string. I just chose these names because they are quite
common across shells.

C Hash tables

It says in the introduction that I presume a knowledge of basic programming
concepts, and hash tables are pretty basic, and moreover aren’t a shell-specific
concept, so I didn’t include this in the main body of the text. On the other
hand, they aren’t as basic as the other things I presumed knowledge of, so I
figured I’d provide a discussion of them just for completeness.

Hash tables are an efficient (and ingenious) way to store arbitrary amounts
of data and look it up quickly. A hash table consists of a series of linked lists. A
linked list is a type of list in which each element of the list contains some data
and a pointer to the next element. This allows you to step along the list in one
direction. In a hash table, one of the data in each node of the list must be a
name (for looking-up purposes).

The idea with a hash table is that the name of any given entry can be trans-
formed into a single number, in a random but consistent manner; that is, it’s
very hard to guess what number a given string will give you, but if you trans-
form the same string twice, you’ll get the same number. This transformation is
called hashing.

To store a given entry in the hash table, the name is first hashed, and the
returned number indicates the index of a linked-list in the hash table. The list
is stepped-along until a free entry is found, and then the entry is stored there.

When it comes time to look up a given entry, it is hashed again, and the list
with the index corresponding to the returned number is searched. If the entry
in question isn’t found in the list, then it is certain that that entry can’t be
anywhere else in the table, because it has to be in the list corresponding to its
hash value.

We might ask what the point of this is. Why not, for example, just use a
single linked list? The disadvantage to this is, of course, that one would have
to go through all the entries in order to get to an entry which is quite late in
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the list. Another possibility is to still have multiple lists, but index them in a
more natural way; for example, each list represents the first letter of the entries
it contains, and to look up an entry, I just look at its first letter and go to the
corresponding list. The problem with this is that there would be an uneven
distribution; while it would be very quick to look up entries starting with “q”,
it would take a very long time to look up entries starting with “t”, because that
would be a very big list.

With hashing, the distribution is random, so the lists are guaranteed to
be pretty similar in size. Furthermore, they can be made arbitrarily small on
average by simply having more lists, thus splitting up the entries more.

I must confess that the hashing algorithm I used is taken almost directly
from the book The C Programming Language by Brian Kernighan and Dennis
Ritchie (the only C book worth reading). It resides in the function hash() in
variables.c, and looks like this:

for (hashval = 0; *s != '\0'; s++)

hashval = *s + 31 * hashval;

return hashval % 101;

What this algorithm essentially does is to treat the given string as a number
in base 31, each letter being treated as a digit corresponding to its place in the
alphabet, and then taking the remainder of the whole thing divided by 101.
The specific numbers don’t necessarily have to be 31 and 101, as long as they
are relatively prime (share no common factors) – a condition which is assured
if they are both prime, which is the case here. The reason for this is to get all
possible values for the modulo. (My choice for these specific numbers is due to
the fact that they were the numbers used in the source from which I plagiarized
this).

It is clear in this algorithm that the resulting number will have very little
to do with the initial string in any meaningful way, which is exactly what we
want. The number of lists in the hash table will of course be in this case 101.
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