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1 Introduction

In 1994, Gelfand, Kapranov, and Zelevinsky [4] described a construction which asso-
ciates to a finite set of points in the plane a certain polytope, called the “secondary
polytope”, such that the different faces of the polytope correspond to different (“nice”)
triangulations of the point set, and the combinatorial structure of the polytope repre-
sents the relations between these different triangulations.

Now, their purpose in defining this object is rooted in some very complicated alge-
braic geometry, which is far beyond the scope of this paper. Nevertheless, mathemati-
cians love to classify things, and so a nice geometric classification of triangulations of a
point set has an appeal in its own right.

Moreover, triangulations of punctured Riemann surfaces are of significant interest,
for instance in their application by Penner [5] to the parametrization of the surface’s
Teichmüller space.

It turns out that the aforementioned concept of “nice” triangulations generalizes in
a natural way to triangulations of punctured Riemann surfaces, and we similarly get a
geometric object (the “secondary fan”) which classifies all the “nice” triangulations of
a punctured Riemann surface and their relationship to one another.

Here, we will present this construction, as well as a program which explicitly com-
putes this secondary fan for a given Riemann surface, and take a look at a couple of
examples which the program has produced.

2 “Nice” triangulations

To begin, we will describe the class of triangulations which Gelfand, Kapranov, and
Zelevinsky managed to classify, albeit in a manner very different from how they described
them.

We start by considering so-called “Delaunay triangulations”.
By a triangulation of a polygon, we mean any simplicial complex whose underlying

space is that polygon. A triangulation of a point set is a triangulation of its convex hull,
whose vertex set is the given point set.

There are several equivalent ways of defining Delaunay triangulations. The simplest
one is probably the following: a triangulation of a point set is Delaunay if the interior
of each triangle’s circumcircle contains no vertices of the triangulation. Roughly speak-
ing, the main appeal of Delaunay triangulations is that they avoid “skinny” triangles,
which turn out to be for various reasons undesirable. Known applications of Delaunay
triangulations include the generation of meshes in computer graphics, the finite element
method for numerically solving partial differential equations, and the visualization of
landscapes [3].

In addition, aside from their applications, Delaunay triangulations are nice in the
sense that they have a lot of useful characteristics which are also provable (as opposed
to mesh algorithms which are only heuristically good).

One of the first things one might like to prove is that a Delaunay triangulation
always exists and is effectively computable. To do this, we first introduce another

1



characterization of Delaunay triangulations which will be useful to us in the sequel. Here,
we describe a condition not on the triangles of the triangulation (or their circumcircles),
but rather on edges lying between two triangles. Any such edge defines a quadrilateral
(see figure 1).

We call such an edge Delaunay if the sum of the two angles in the quadrilateral at
the ends of the edge is greater than or equal to the sum of the two angles opposite the
edge. (In figure 1 we must have ∠kil+∠kjl ≥ ∠ikj+∠ilj). The edge is called strongly
Delaunay if this inequality is strict. Otherwise, it is weakly Delaunay.

It can be shown (see, for example, [3]), that a triangulation is precisely Delaunay
when all of its edges are Delaunay.

The nice thing about this characterization is its relation to “flipping”.

l
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j

Figure 1: A pair of triangles before and after flipping

A flip is an operation with which triangulations can be modified to produce new
triangulations. We again consider the quadrilateral formed by the two triangles adjoining
an edge. If the quadrilateral is convex, we can remove the separating edge, and replace
it with the quadrilateral’s other diagonal (see figure 1).

It is then easy to see that an edge is strongly Delaunay precisely when its flipped
counterpart is not Delaunay, and is weakly Delaunay precisely when its flipped coun-
terpart is as well. Edges which cannot be flipped (i.e., are the diagonal of a non-convex
quadrilateral) can easily be seen to be strongly Delaunay.

Given this, a very simple-minded algorithm for producing Delaunay triangulations –
called the “flip algorithm” – presents itself: we start with an arbitrary triangulation of
our point-set – it can easily be shown that one always exists – and then we repeatedly
search for edges which are not Delaunay and flip them. Fortunately, this simple-minded
algorithm works: we can prove that it terminates (in O(#vertices2) time) and produces
a Delaunay triangulation.

One of the ways to prove that this works is by using a powerful tool for characterizing
Delaunay triangulations called the parabolic lifting map. Here, we place an elliptic
paraboloid above the plane containing the triangulation, and lift each vertex onto it
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(that is, the point (x, y) in the plane gets mapped onto the point (x, y, x2 + y2) on
the paraboloid). We then take the convex hull of the lifted point set, and project the
1-skeleton of its underside back down onto the plane. This produces a partition of our
point set into polygonal regions. We then obtain a triangulation by arbitrarily refining
the partition in any regions which aren’t already triangles. It turns out, remarkably, that
the triangulations obtained in this way are precisely the Delaunay triangulations (this,
by the way, immediately gives us a proof for the existence of Delaunay triangulations,
because we can always take a convex hull). See [3] for a proof.

One then shows that the Flip Algorithm terminates because each flip turns a con-
cavity into a convexity, and thus lowers the lifted triangulation, so no edge which has
been flipped once can reappear. That means, each edge can be flipped at most once,
giving the O(n(n − 1)/2) = O(n2) bound on the run-time (n(n − 1)/2 is the maximal
number of edges in a triangulation of n vertices). See [3] for more details.

As it happens, we are actually not particularly interested in Delaunay triangulations
themselves, but rather a generalization thereof, known as “weighted” Delaunay triangu-
lations. Here, we assign each vertex a real number (its “weight”) and then, after lifting
it to the paraboloid, pull the point back down by that amount. That is, if the vertex at
(x, y) has the weight w, it gets lifted to (x, y, x2 + y2−w). We then call a triangulation
“weighted Delaunay” (for given weights on each vertex) if it is the projection of the
underside of the convex hull of this modified lifted set of points (again, possibly after a
refinement of non-triangular regions). Note here that some vertices might lie inside the
convex hull, in which case they will not appear in the resulting projection. We still allow
this, so that weighted Delaunay triangulations are actually triangulations of subsets of
the given point set.

We will return later on to this description of weighted Delaunay triangulations, but
first we move onto the secondary polytope, which we are now ready to describe.

We can see that for the description of weighted Delaunay triangulations, the paraboloid
is actually immaterial. Instead of assigning a weight to each point, by which we displace
it from the paraboloid, we can just go right ahead and assign an arbitrary height to each
point.

A weighted Delaunay triangulation is then any which is the projection of the under-
side of the convex hull of some set of points lying above the plane. This is, by the way,
what Gelfand, Kapranov, and Zelevinsky call a coherent triangulation (although they
do it the other way around, considering the upper side of the convex hull), and what we
referred to earlier as a “nice” triangulation.

The construction of the secondary polytope (of a given point set in the plane) now
proceeds as follows. First we enumerate the points. We then associate to each triangu-
lation of (a subset of) the point set a point in Rn (where n is the number of points) by
assigning to the i-th coordinate the sum of the areas of all triangles containing the i-th
point as a vertex. We do this for all possible triangulations, and then take the convex
hull of the resulting set of points in Rn. The convex polytope that we obtain is the
secondary polytope.

Gelfand, Kapranov and Zelvinsky showed that the triangulations corresponding to
vertices of the resulting polytope are precisely the coherent triangulations. They ad-
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ditionally described the relation between any two triangulations whose vertices in the
secondary polytope are connected by an edge. This is however somewhat involved, and
not of great importance to us; the corresponding relation between neighbouring tri-
angulations of a punctured Riemann surface will be considerably simpler. We should,
however, mention, that in the simplest case, their more complicated relation reduces to
our simpler relation.

The object of which we will be producing an analogue for Riemann surfaces is not
the secondary polytope, but its “normal fan”, the secondary fan.

A polyhedral cone in Rn is any region which is the intersection of finitely many closed
half-spaces containing the origin. A polyhedral fan is a collection of polyhedral cones
which cover the space, and such that each face of each cone is in the collection, as well
as the intersection of any two cones.

Any bounded polytope gives rise to a polyhedral fan, called its normal fan. To each
facet of the polytope, we take the cone of all v ∈ Rn such that the function 〈v, ·〉 is
maximized on that facet (where 〈·, ·〉 is the standard scalar product on Rn).

It’s not hard to see that this construction associates to each k-dimensional face an
(n− k)-dimensional cone.

Thus the secondary fan has a maximal cone (that is, of dimension n) for each coherent
triangulation of the point set, and triangulations corresponding to neighbouring cones
are related in some nice way which we haven’t described.

3 Punctured Riemann surfaces

We now move on to the construction of a secondary fan for a punctured Riemann surface.
Here, we consider a closed orientable surface with a finite number of punctures – that

is, removed points – with a prescribed hyperbolic structure – that is, a complete metric
of constant negative curvature and finite area. Here, the set of punctures is what we
will be triangulating, and it is analogous to the point set we started with in the plane.

It should be noted that the prescription of a hyperbolic structure is equivalent to the
prescription of a conformal structure on the surface – that is, this makes the topological
surface into a Riemann surface. This is why we speak of the “secondary fan of a Riemann
surface”.

By a triangulation of such a Riemann surface, we mean a choice of non-intersecting
geodesics connecting the punctures, which partitions the surface into topological trian-
gles with the corners removed.

When we refer to a triangulation on a punctured topological surface, we mean the
same thing but without the restriction that the curves be geodesics. Where there is
possible ambiguity, we will refer to the latter concept as a topological triangulation.

Note that we are not interested in punctured topological surfaces which can’t be
triangulated or which don’t admit a complete hyperbolic structure, and whenever we
refer to a “surface”, we mean one for which both of these things are possible.

Here, we are again only interested in “nice” triangulations. To decide whether a
triangulation is “nice”, we must first give it some additional structure, analogous to the
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weights in a weighted Delaunay triangulation. It is well known that each puncture on
a hyperbolic surface forms a “cusp”, a kind of infinitely long horn which gets thinner
and thinner. By cutting off these cusps at a certain height, we truncate the sides of our
triangles (which are currently infinitely long) and give them a finite length. A choice
of “weights” for a triangulation is then essentially a choice of heights at which we cut
off the cusps. A triangulation together with a choice of cusp truncations will then be
“nice” if its truncated triangles satisfy a certain property (which we will again call the
Delaunay condition, and with good reason).

3.1 Delaunay triangulations of punctured Riemann surfaces

To proceed, we’ll need to pass to the universal cover of our surface. Now, since our
surface is by assumption hyperbolic, the uniformization theorem tells us that its uni-
versal cover is the hyperbolic plane. That is, the surface is the quotient space of the
hyperbolic plane by a discrete group of hyperbolic isometries. Thus, we can visualize
the surface as a tiling of the hyperbolic plane (much as wee can see the torus as a tiling
of the Euclidean plane by rectangles).

Figure 2: Surface displayed in the hyperbolic plane. We regain the original surface
either by gluing the sides of this figure, or by tiling the plane with it and then taking
the quotient of the plane by the corresponding discrete group of isometries.

One “tile” in the Poincaré disk model of the hyperbolic plane (in which geodesics are
arcs of circles intersecting the disk’s circumference orthogonally) would look something
like figure 2. Note that the punctures must lie on the circle at infinity. We see now that
in this picture, the triangles of our triangulation are actually ideal hyperbolic triangles
– that is, a topological triangle (minus the vertices) in the hyperbolic plane bounded by
three geodesics meeting pairwise in the circle at infinity (as in figure 3). Note that all
the angles of such a triangle are zero, and each side is infinitely long.

Next, we recall that a horocycle, in the Poincaré disk model of the hyperbolic plane,
is a (Euclidean) circle in the disk which is tangent to the circle at infinity (that is, the
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circumference of the disk) at one point. We will now see that the “truncation of cusps”
referred to in the previous section is actually a choice of a horocycle at each cusp.

Let us consider, for example, an ideal hyperbolic triangle, together with a horocycle
at each vertex (see figure 3). If we consider the part of any side of the triangle lying
between the two horocycles, we see that it has some finite length. For the side between
vertices i and j, we denote this length by λij , as in figure 3. We should note at this
point that we also allow the two horocycles to overlap, in which case λij is still defined
as the length of the part of the side lying between the two horocycles, and is taken in
this case to be negative. We will primarily make use of the quantities `ij := e

1
2
λij > 0.

Perhaps it would be most fitting to call this quantity the edge’s exponential length, but
as we will not have occasion to talk about any other sorts of edge-lengths, we will just
refer to it as the edge’s length.

k

i

cijk

j

λij

Figure 3: An ideal hyperbolic triangle with horocycles

We can also see that the choice of a horocycle gives our triangle something like angles
(that is, some positive real number assigned to each corner), which we call pseudo-angles;
we simply take the length of that part of the horocycle which lies within the triangle. In
a triangle with vertices i, j, and k, we denote the pseudo-angle at k by cijk , as in figure
3.

The quantities c and ` are related by the simple formula

cjki =
`jk
`ij`ik

(1)

(a very simple proof of this is given in [2]).
Before we move on, let us gather one more important fact about these newly-defined

quantities: the behavior of the lengths ` with respect to “flips”. Here, we consider an
ideal hyperbolic quadrilateral divided by an edge into two triangles (see figure 4). We
want to derive a formula for `jl in terms of the lengths ` of the other sides.
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Now, according to (1), we have

`jl = cjlk `kl`jk (2)

On the other hand, the pseudo-angle cjlk is clearly the sum of the two pseudo-angles
which it is split into by the edge ik:

cjlk = cilk + cijk (3)

But, again by (1), these are given by

cijk =
`ij

`ik`jk
and cilk =

`il
`ik`kl

(4)

Putting (2), (3) and (4) together, we obtain

`ik`jl = `ij`kl + `il`jk (5)

i

j

l

k

Figure 4: A hyperbolic flip

We now define a weighted triangulation of our surface as a triangulation, together
with a choice of a particular horocycle at each cusp.

Unfortunately, this definition doesn’t actually make any sense, because the choice
of a horocycle at a cusp depends on the particular representation of the surface in the
hyperbolic plane. But: given one such horocycle at a cusp in one particular “tile”, we
get one at every other tile by taking the Γ-orbit of that horocycle (where Γ is the discrete
group of isometries defining the surface). That is, from the one horocycle h ⊂ H2 we
obtain the family of horocycles Γh = {γ(h) ⊂ H2 | γ ∈ Γ}1.

1There is one technical difficulty with this construction: for it to be well-defined, Γh cannot have
two horocycles centered at the same point at infinity. That is, any γ ∈ Γ fixing a point at infinity
corresponding to a cusp must also fix horocycles at that point at infinity (such an element is called
“parabolic”). However, [5] states this without proof or further comment, so presumably it’s obvious.

7



So we actually define a weighted triangulation as a triangulation, together with a
choice of a Γ-orbit of horocycles for each cusp. We call these Γ-orbits of horocycles
weights.

Note that, although the specification of a Γ-orbit of horocycles sounds like a pretty
daunting task, we can actually parametrize these choices in quite a concrete way: we
simply add up all the pseudo-angles of corners of triangles at a given vertex, which we
call the pseudo-angle-sum at that vertex. (Intuitively, this is just the circumference of
the circle bounding the truncated cusp). Clearly, there is exactly one horocycle for each
such pseudo-angle-sum, and so a choice of Γ-orbits of horocycles at each cusp is really
nothing more than a choice of positive real numbers.

The next task is to describe when such a weighted triangulation is Delaunay.
For this, we turn to the hyperboloid model of the hyperbolic plane. Recall that the

hyperboloid model represents the hyperbolic plane as the hyperboloid x21 + x22 − x23 =
1, x3 > 0 in R3 with the metric induced by the Minkowski inner product in R3:〈x1x2

x3

 ,
y1y2
y3

〉 = x1y1 + x2y2 − x3y3

The hyperboloid model is related to the Poincaré disk model by stereographic projection
through the origin onto the disk x21 + x22 ≤ 1, x3 = 1.

The light-cone L+ in the hyperboloid model is the set 〈x, x〉 = 0, x3 > 0. This is just
the cone with slope 1 surrounding the hyperboloid.

Each vector in the light-cone lies above a point at infinity in the disk model and
corresponds to a horocycle centered at that point (we say that a horocycle is centered at
the corresponding point at infinity because each geodesic perpendicular to the horocycle
passes through that point). Specifically, for a vector x ∈ L+, the corresponding horocycle
is the set of all points y in the hyperboloid with 〈x, y〉 = −1.

Thus, our choice of “weighted vertices” – that is, of (Γ-orbits of) horocycles – cor-
responds to a choice of points in the light-cone lying under the hyperboloid. When we
were considering plane weighted Delaunay triangulations, our choice of weighted vertices
corresponded to a choice of points lying under the paraboloid. There, we obtained a
weighted Delaunay triangulation by taking the convex hull of those points, and consid-
ering the induced polygonal complex (and, after an arbitrary refinement, triangulation)
on its underside.

In the same vein, we can take the convex hull of the points representing our horocy-
cles. The underside of this convex hull again induces a polygonal complex on the points
in the light cone. By connecting the corresponding points at infinity with geodesics, we
then obtain a partition of the hyperbolic plane into ideal polygons. Taking the quo-
tient under Γ to obtain the surface, this descends to a polygonal complex on the surface
(see [5] for a proof). We then, again, arbitrarily refine the partition in any non-triangular
regions to obtain a triangulation.

We therefore call a weighted triangulation of the surface Delaunay if it arises as a tri-
angulation obtained by the above construction for the choice of horocycles corresponding
to that triangulation’s weights.
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Of course, with this definition, we have no practical way of checking whether a given
weighted triangulation is Delaunay.

Fortunately, the above condition is equivalent to a much simpler one. We recall that
one characterization of plane Delaunay triangulations was that at each edge adjoining
two triangles, the sum of the two angles of the quadrilateral which touch the edge must
be greater than or equal to the sum of the other two angles (see figure 1 and the text
pertaining to it). The condition here is exactly the same, simply with the angles of plane
triangles replaced with the pseudo-angles of our truncated hyperbolic triangles.

That is, for any two bordering triangles ijk and ikl (as in figure 4), we must have

cijk + cijl ≤ c
jk
i + cjli + cikj + cilj (6)

A proof of the equivalence of these conditions can again be found in [5].
We again call any edge ik for which the condition (6) holds Delaunay, and if the

inequality is strict, then strongly Delaunay (and otherwise weakly Delaunay). We again
have that an edge is strongly Delaunay precisely when its flipped counterpart is not
Delaunay, and is weakly Delaunay precisely when its flipped counterpart is as well.

We note that a triangulation is obtained directly from the convex hull construction
(that is, rather than being the refinement of a polygonal decomposition) precisely when
all its edges are strongly Delaunay (which is, again, proved in [5]).

3.2 The secondary fan of a punctured Riemann surface

We are now ready to construct the secondary fan of a punctured Riemann surface.
We start with some surface with n punctures (labeled 1 to n) and some fixed trian-

gulation on it, together with some arbitrary weights at each cusp. We now modify these
weights, and would like to see for which modifications the given triangulation becomes
(or remains) Delaunay.

Specifically, we modify the weight at i-th vertex by scaling all of the light-cone
vectors in the corresponding orbit of horocycles by some positive factor xi. Now, it
can be shown that the edge-lengths `ij are proportional to the lengths of these vectors
(see [5] for a proof). That is, after scaling, we have new side-lengths

˜̀
ij = xixj`ij

Correspondingly, we have new pseudo-angles, given by (1):

c̃jki =
˜̀
jk

˜̀
ij

˜̀
ik

=
1

x2i
cjki

We recall that the Delaunay condition was given by the inequalities (6) for the
pseudo-angles, one inequality for each edge. The condition on the new, modified pseudo-
angles is then

1

x2k
cijk +

1

x2l
cijl ≤

1

x2i
(cjki + cjli ) +

1

x2j
(cikj + cilj )

9



This is a homogeneous linear inequality in the variables ui := 1
x2i

. That is, it defines a

closed half-space in the space Rn>0 of all values for the ui’s. All the inequalities together
therefore define a polyhedral cone in this space. (Note that above, we only defined
polyhedral cones in Rn, but the definition is identical in Rn>0).

At any boundary of this cone, one or more inequalities become equalities; that is, the
corresponding edges are weakly Delaunay. By passing to the other side of the boundary,
the original triangulation is no longer Delaunay, but the one obtained by flipping all
the edges which were weakly Delaunay at the border, is. This new triangulation then
defines a new cone bordering the old one.

By considering all possible triangulations, we then get a partition of Rn>0 into cones
(that is, a fan), such that each cone corresponds to a triangulation (or – as we’ll see –
several triangulations), and two neighbouring triangulations are related by one or more
flips. This fan is, of course, what we call the secondary fan of the Riemann surface.

Note that we really do obtain a partition of the whole space, because for any choice
of weights, there is a triangulation which is Delaunay with respect to those weights
– namely, the one produced by the convex hull construction with the corresponding
horocycles.

As a final remark before we move on, our definition of the weight modifications xi
depended on our starting with an initial arbitrary choice of weights, which is somewhat
undesirable; for each such choice we will get a different fan (it will be scaled by some
factor in each coordinate), although combinatorially they will all be the same. To
“normalize” the fans, we therefore choose the convention that the initial weights are all
chosen such that the pseudo-angle-sum (as described in the previous section) at each
vertex is 1. Note that, in this case, the variables ui are precisely the pseudo-angle-sums.

4 Computing the secondary fan

4.1 A short aside about the Penner coordinates for the decorated Te-
ichmüller space of a punctured surface

We now move on to describe the program the present author has written to compute
the secondary fan of a given punctured Riemann surface.

The first question is: what do we give this program as input? That is, how can we
describe an arbitrary punctured Riemann surface in some finite way?

Now, describing the topology of the surface is simple enough; we can do this simply by
giving a topological triangulation. The hard part is describing the geometric structure,
that is, the metric.

The solution comes to us from R.C. Penner.
In general, the space of all hyperbolic structures on a topological surface is called

its Teichmüller Space. This space is in general a smooth manifold, each point of which
corresponds to a hyperbolic structure on the surface, and whose own smooth structure
encodes the way these structures can vary in a smooth way.

Penner, in [5], introduces a Teichmüller space for punctured surfaces, where each
point corresponds to a hyperbolic structure plus a choice of weights at each cusp. He
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calls this the “decorated Teichmüller space” of the punctured surface. We observe
that, given a fixed topological triangulation of the surface with m edges (one can easily
convince oneself using the Euler characteristic that this number is the same for any
triangulation), each point in the decorated Teichmüller space (that is, each hyperbolic
structure on the surface) gives us a point in Rm>0, by taking the lengths of all the edges
in the triangulation. Penner goes on to show that this correspondence is a bijection (in
fact, it is a homeomorphism, but that needn’t concern us).

What this means for us is that (i) any punctured Riemann surface can be completely
specified by giving a topological triangulation of it and a choice of positive numbers
for each edge, and furthermore (ii) each such specification corresponds to a punctured
Riemann surface.

4.2 The program

We come to the description of the program.
As discussed, the program takes as input a triangulated surface with assigned edge

lengths. The triangulation is specified by so-called half-edges. If we think of an unori-
ented edge as being two oriented edges glued together so that the orientations cancel
out (something like 
), then a half-edge is one of these two oriented halves. By spec-
ifying, for each half-edge in the triangulation, its “partner” half-edge, along with the
“successor” half-edge in the triangle on its left-hand side (which makes sense because
its oriented), we get a complete description of the triangulation.

It should also be mentioned at this point that the lengths are given as rational
numbers, and all subsequent computations are performed with exact arithmetic.

We know that this input determines, along with the surface, a certain choice of
weights. As mentioned in the previous section, we want these weights to be normalized,
in order to get consistent secondary fans. The program performs this normalization
immediately. That is, for each vertex, it calculates the sum of all the pseudo-angles

cjki =
`jk
`ij`ik

at that vertex and then scales the length `ij of each edge at that vertex by

the same factor, so that this sum becomes 1.
The next task is to generate the inequalities (6), which is straightforward; we iterate

through all the edges and compute the six quantities cjki according to the formula (1).
The “inequality” is then really nothing more than an array with the coefficients in (6).

The real heavy lifting is then provided by a very nice library called cddlib developed
by Komei Fukuda (and the equally nice python wrapper pycddlib). This library converts
between the so-called H-representation (“half-space”) and V-representation (“vertex”)
of a convex polytope. The former describes a polytope in terms of its bounding planes
– which is the description given by our generated inequalities – and the latter describes
the same polytope by means of the vertices of which it is the convex hull – which is
better suited for visualizing the polytope, or performing further analysis, like generating
the face lattice.

Applying this algorithm to our set of inequalities, we obtain the coordinates of the
first cone – that is the one corresponding to the original triangulation. It remains to
find the rest.
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We know we can obtain all the neighbouring triangulations by flipping the edges
which are weakly Delaunay at each facet.

We obtain the facets of the cone by finding, for each inequality, all the vertices at
which that inequality becomes an equality (that is, all vertices which lie on the plane
defined by the inequality). To find the edges which are weakly Delaunay at a given facet,
we evaluate each inequality at each vertex of the facet (remembering that each of our
inequalities corresponds to an edge). We then take all the edges (that is, inequalities)
which are weakly Delaunay (that is, are equalities) at every vertex of the facet.

We now flip all of these and obtain a new triangulation, and with it, a new cone. The
flipping is simple to implement: we just change the “partner” and “successor” pointers
in each half-edge in the corresponding quadrilateral to reflect the new configuration, and
then set the length of the newly flipped edge according to (5).

The program then proceeds to do a depth-first search, applying the flips for each
facet of each cone, to find the rest of the cones. There is also an interactive mode,
wherein the user can manually specify the flips.

One might ask why this search must terminate – that is, why there might not be
infinitely many cones. For a point set in the plane, there are only a finite number of
triangulations (bounded, for example, by the number of graphs on the vertex set), but
on a surface, two vertices can be connected in many, even infinitely many, ways, so this
doesn’t hold. Fortunately, it has been proven that there are only a finite number of
triangulations which can be obtained by the convex-hull construction, see [1].

5 Some secondary fans

We will now look at a couple of secondary fans, as generated by the program, and see
if we can observe anything interesting about them. Note that we will only be looking
at fans of thrice-punctured surfaces, because these are the ones most easily visualized.
These are namely the three-dimensional fans, which, when projected from R3

>0 onto the
standard 2-simplex (which we can do, because our cones are all invariant under scaling)
give us a partition of an equilateral triangle by polygons.

5.1 The thrice-punctured sphere

We begin with the thrice punctured sphere. The program, we recall, needs a specific
triangulation as input, along with preassigned edge-lengths.

The most obvious triangulation of a sphere with three vertices consists of two tri-
angles and looks like a sort of pin-cushion. That is, we place the three vertices evenly
spaced around a great circle and connect them with geodesics.

Topologically, the triangulation looks like figure 5.
When choosing the edge-lengths, we have to ensure that the resulting triangulation

can be made Delaunay for some weights. Otherwise, the initial cone will be empty, and
the algorithm doesn’t work. One easy way to make a given triangulation Delaunay is
to set all the edge-lengths to 1. In this case, all the terms in (6) become 1, and the
inequality becomes 1 ≤ 2, which is true. We call the secondary fan of a topological
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Figure 5: A topological picture of the pin-cushion triangulation of the sphere. The
arrow-heads indicate the gluing and orientation of the edges.

surface which arises from this choice of edge-lengths the standard fan of that surface
(where it is implied that we’ve chosen some canonical starting triangulation for the
surface, which is the case for all surfaces we will investigate here).

The standard fan of the thrice punctured sphere is shown in figure 6. We see that
there are three other triangulations. Each of these triangulations is obtained by flipping
one of the three edges of the pin-cushion sphere.

Figure 6: The standard fan of the thrice punctured sphere

The resulting triangulation of the sphere consists of two cones glued to each other
along their bases. Topologically, the triangulation is as in figure 7. The upper triangle is
shown on its own in 8 (this can be seen as a cone being viewed from the top). Note that
the two triangles here are “degenerated”, in the sense that two of their edges coincide
and they only have two distinct vertices.
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Figure 7: A topological picture of the two-cone triangulation of the sphere

Flipping the central edge in figure 7 (that is, the one between the two cones), we
then return to the pin-cushion. One might ask why it isn’t possible to flip the other
two edges in figure 7, that is, the “degenerate” edge in figure 8 connecting the point of
the cone to its base. Well, it isn’t immediately obvious what this would mean. The two
triangles lying on either side of one of these edges are actually the same triangle.

2 1

Figure 8: A triangle with one edge glued to itself

Fortunately, such an edge is always strictly Delaunay, so we have no need to flip it
anyway, and we mustn’t spend any more time trying to figure out whether this operation
could be reasonably defined.

To see that an edge gluing a triangle to itself is always strictly Delaunay, let us
simply write down the corresponding inequality. Consider, for example, the triangle
41, 1, 2 from figures 7 and 8. There are two pseudo-angles at the vertex 1, but they
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both have to be equal, as they are both given by the formula

c121 =
`12
`11`12

The angle at 2 is similarly c112 .
The edge in question is the one between 1 and 2. The two pseudo-angles in the

“quadrilateral” which are “opposite” to this edge are both c121 . Two of the four pseudo-
angles adjacent to this edge are c121 and the other two are c122 . Altogether our inequality
(6) is then

2c121 ≤ 2c121 + 2c112

which is obviously true (with strict inequality), because pseudo-angles are always posi-
tive.

We can actually see that the secondary fan of any thrice punctured sphere will look
(combinatorially) like the one in figure 6.

To this end, let us consider the pin-cushion triangulation, but with arbitrary edge-
lengths – recall, by considering all possible edge-lengths for this triangulation, we achieve
all possible Riemann surfaces on the thrice-punctured sphere – and compute the corre-
sponding cone “by hand”.

Labeling the vertices as in figure 5, our three edge lengths are `12, `23, `13 > 0. Our
three pseudo-angles are then

c231 =
`23
`12`13

, c132 =
`13
`12`23

, and c123 =
`12
`13`23

(there are actually six pseudo-angles, three per triangle, but because the two triangles
share the same sides, their corresponding pseudo-angles are equal).

To get our inequalities, we note that for any of the three edges, its surrounding
quadrilateral consists of the two triangles of the triangulation, the two pseudo-angles
“opposite” the edge are both the same and the four “adjacent” pseudo-angles consist of
the other two pseudo-angles in the triangulation, each counted twice.

Our inequalities in the scaling variables u1, u2, u3 (here we needn’t worry about
normalization, because we just want a combinatorial picture of the fan) are then

2
`jk
`ij`ik

ui ≤ 2
`ik
`ij`jk

uj + 2
`ij

`ik`jk
uk

for {i, j, k} = {1, 2, 3}. Rearranging (and setting li := `2jk, {i, j, k} = {1, 2, 3} for read-
ability), we obtain

0 ≤ l3u3 + l1u1 − l2u2
0 ≤ l1u1 + l2u2 − l3u3
0 ≤ l2u2 + l3u3 − l1u1

(7)
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Setting u3 = 0, we obtain

0 ≤ l1u1 − l2u2
0 ≤ l1u1 + l2u2

0 ≤ l2u2 − l1u1

Setting u1 and u2 in turn to 0, we obtain similar inequalities. Each restriction ui = 0
is one of the coordinate planes, and we see that in each case, one of the inequalities
holds everywhere, and the other two become equalities simultaneously. That is, the
planes corresponding to the inequalities (7) coincide pairwise on the coordinate planes,
the third inequality holding everywhere on the coordinate plane where the other two
coincide.

Projecting onto the 2-simplex u1 + u2 + u3 = 0, we see that the region defined by
(7) is then precisely a triangle like the central one in figure 6.

Again, the three facets of the central cone each correspond to a flip which produces
a two-cone sphere, and since the resulting triangulation doesn’t have any other flips, the
corresponding cone must be the entire region lying opposite that facet. This ends the
proof.

Another property of the thrice-punctured sphere which makes it particularly simple
is that the pin-cushion and the two cones are its only triangulations. To see why, let’s
consider an arbitrary triangulation. First of all, it is easy to see that any triangulation
has to have three edges and two faces. So to produce an arbitrary triangulation, we
start with two triangles and glue them together along one edge. This gives us a square.
We now have to pair off the other four edges and glue them together. It’s now just a
matter of checking all the possibilities, and doing so, we see that the pin-cushion and
the two-cones are the only ones which produce a sphere.

So to recapitulate: the thrice punctured sphere has precisely 4 triangulations, and
for every hyperbolic structure on it, each of these corresponds to a maximal cone, and
they always have (combinatorially) the same fan.

We will see that with other surfaces, the situation is not so simple.

5.2 Hexagonal torus

It is also possible to triangulate a torus with three vertices. This can be seen most
easily by representing the torus as a hexagon with its sides glued together. We then just
triangulate the hexagon in the obvious way, giving us figure 9.

Again, we set the length of all the edges to 1. Generating the fan, we find, surpris-
ingly, that it’s the same fan that we got from the thrice punctured sphere (figure 6).
This is rather disappointing, because the torus is considerably more complex; there are
9 edges to be flipped, instead of just three, so we would expect more cones in the fan.

Taking a closer look (with the program), we see that each of the three facets in this
fan corresponds to three flips. Looking back at our torus, we see that this is due to
the symmetries of the surface. There are, for example, three different edges connecting
the vertices 1 and 2. As we’ve assigned the same weights to each edge, everything is
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Figure 9: The hexagonal torus, triangulated. The vertices are numbered and identified
appropriately.

perfectly symmetrical with respect to these three edges. When we reach a facet of the
central cone where one of them is weakly Delaunay, for instance, it follows that they are
all weakly Delaunay.

Suppose we flip only one or two of these edges. What is the cone of the resulting
triangulation? Well, it has all the same inequalities as the central cone, except for one
or two which define the half space on the other side of the facet. That is, its cone is
precisely this facet.

We see, therefore, that triangulations can have cones which aren’t maximal. Fur-
thermore, each of the 6 triangulation obtained by flipping one or two of the edges
corresponding to a facet all have that facet as a cone. So we also see that non-maximal
cones can correspond to more than one triangulation.

By slightly perturbing the lengths we can remove some of the degeneracies in the
fan. For example, by changing the length of a single edge (specifically, by changing the
length of topmost vertical edge in figure 9 from 1 to 1.2), we get the fan in figure 10.

Notice that the basic structure of the first fan is preserved, but the bottom three
cones have each been refined into multiple cones.

We discover another interesting phenomenon if we run the program on this new torus
in interactive mode. We start off in cone A in figure 10. By performing the flip which
results in configuration in figure 11-1, we get to the cone B. Another flip (producing
the configuration in figure 11-2) brings us to the cone C.

We now want to continue to the cone D. The program tells us that we have to
flip the two dashed edges in figure 11-2. That we have to flip more than one edge is
clearly due to the symmetry of the configuration, as in the above case. What is different
here, however, is that the flips don’t commute. That is, when we had to simultaneously
flip three edges above, we could flip each of the edges independently without affecting
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Figure 10: The standard fan of the thrice-punctured torus, with a perturbation on one
edge length

the others. But here, we achieve two different triangulations depending on the order of
flipping.

Performing these flips bring us to figure 11-3 and then to figure 11-4 and to the
desired cone D in the fan. We see that if we had performed the flips in the opposite
order, we would have arrived at the mirror image of the current configuration, which has
the same cone due to symmetry. This shows us that also maximal cones can correspond
to more than one triangulation!

The two triangulations in question are related by flipping the lower dotted edge in
figure 11-4. This must mean that in this cone, that edge is always weakly Delaunay,
because otherwise flipping it would produce a non-Delaunay triangulation.

But this seems impossible. Normally, an edge is weakly Delaunay on a plane, so it
can’t be weakly Delaunay on this entire maximal cone. The answer is, of course, that the
inequality corresponding to this edge is trivial, so that it actually defines a whole-space
(so to speak) instead of a half-space.

We can actually see that the inequality generated by this edge is trivial by looking
at the diagram and remembering that all the edges have the same lengths except for
the upper dotted edge. In the quadrilateral surrounding the edge in question, the two
upper pseudo-angles are the same size = c232 , and the two lower ones (c233 ) are the same
as well. Also, both vertices on top are the same vertex 2, and both on bottom are the
vertex 3. The generated inequality will then have the same terms on both sides:

c2 · u2 + c3 · u3 ≤ c2 · u2 + c3 · u3
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Figure 11: A sequence of flips on the torus

To move on to the next cone E in 10, we’re instructed to flip the two dotted edges
in figure 11-4. Now, we know that flipping the lower edge won’t get us anywhere, so we
flip the other one, giving us figure 11-5. Flipping the lower one then brings us to figure
11-6 and to the desired cone.

Here, again, changing the order of the flips led to different triangulations, but only
one of them was the desired one. In fact, it wasn’t a priori obvious that the second edge
would remain weakly Delaunay in figure 11-5, so that we would still have to flip it to
get to the next cone. Actually, we saw the same phenomenon above, when we made two
non-commuting flips. In general, we can ask the question: given a facet of a cone where
two or more non-commuting edges are all weakly Delaunay, will we always have to flip
all of them to get to the next cone, or can the situation change after having flipped some
of them? Unfortunately, we cannot, at present, answer this question.

It is clear that these unpleasant phenomena are all due to excess symmetry in the edge
lengths. Presumably, by introducing enough asymmetry, we could avoid ever needing
multiple flips at one facet, commuting or otherwise. A little experimentation confirms
this. Figure 12 shows a fan with just this property (each facet corresponds to exactly one

19



flip). It is obtained by setting the edges connecting the vertices 1 and 2 in figure 10 to
1, 1.1 and 1.2, and setting the rest of the edges so that the configuration is symmetrical
with respect to permutation of vertices.

Figure 12: A secondary fan of the thrice-punctured torus with no facet-degeneracies

We also learn from the thrice-punctured torus, through experimentation, that there
can be triangulations whose cones are empty, which, again, we didn’t see with the thrice-
punctured sphere. Indeed, if we set the lengths of two edges corresponding to the same
facet in the standard fan to 1000, leaving all others 1, we get an empty cone.

In general, we have no clear picture of what the fan of the thrice-punctured torus
looks like – in contrast to the thrice-punctured sphere. We don’t know what all the
triangulations are, and for a given hyperbolic structure, we don’t know which of them
will have maximal cones, which will have non-maximal cones, and which will have empty
cones.

5.3 Higher-genus surfaces

In general, we can triangulate a surface of any genus n with three vertices by representing
it as a (4n+ 2)-gon. For surfaces like the torus where n is odd, we simply glue together
opposing edges with opposite orientations. If n is even, we glue together one pair of
opposing edges (with opposite orientations), and glue the rest of the edges in groups of
four according to the pattern aba−1b−1 (as in figure 13).

If we set all the edge lengths to 1, we will always get, for surfaces with an odd genus,
the same kind of symmetry we had with the torus, and we obtain the same standard
fan. In fact, with the surface of genus 3, if we perturb one or two edges, we get the
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Figure 13: A topological picture of the surface of genus 2. The letters and arrows
indicate which edges are glued together, and with which orientations.

exact same fans as with the torus. The difference is, of course, that many more flips are
needed per facet.

Surfaces of even genus are a different story. They don’t share the same symmetries.
Figure 14 shows the standard fans of a genus 2 and 4 surface. They are quite similar
but not identical.

Figure 14: The standard fans of the thrice-punctured surfaces of genus two and four

We might wonder if we can get a fan free of degenerate facets (that is, facets cor-
responding to multiple simultaneous flips) like the one in figure 12 for higher genus
surfaces. This is at least possible for surfaces of genus three, as shown in 15.

Here, the hyperbolic edge-lengths were set according to the same principle as in figure
12. That is, the edges connecting two of the vertices were set arbitrarily (to 1.0, 1.1, 1.2,
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etc.), and then the rest of the edges were set so that the configuration is symmetrical
with respect to permutation of the vertices. As we can see from the fan, however,
the configuration is clearly not symmetric with respect to arbitrary permutation of the
vertices, but rather only with respect to switching the two vertices represented by the
lower two corners of the fan.

Figure 15: A secondary fan of the thrice-punctured surface of genus three with no
facet-degeneracies

The problem is that the representation of the surface of genus three by a 14-gon
with opposite sides glued together simply isn’t as symmetrical as the representation of
the torus by a hexagon with opposite sides glued together.

In the latter case, if we redraw the surface centered around one of the other vertices,
we again obtain a hexagon with opposite sides glued together. However, if we redraw
the surface of genus three centered around one of the other vertices, we get a different
gluing.

We can similarly get a fan for the surface of genus two free of degeneracies by
perturbing all edges lengths. Figure 16 shows the fan produced by setting the edges
D and E in figure 13 to 1.1 and 1.2, respectively, setting the edges connecting vertices
1 and 3 to 1.1, 1.2, 1.3, etc., and setting the rest of the edges to maintain symmetry
between the vertices 2 and 3.

The same pattern produces a fan with no degeneracies for the surface of genus four.
The reason that no fans for surfaces of higher genus are shown here is simply that it

becomes increasingly time-consuming to write the input files for surfaces of higher genus.
In principle, these could be generated automatically according to the recipe described
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Figure 16: Secondary fans of the thrice-punctured surfaces of genus two and four with
no facet-degeneracies

at the beginning of this section, but this has yet to be done.
It would, however, be interesting, for example, to see if the patterns used to produce

figures 15 and 16 would also produce fans for the surfaces of genus five and higher which
are free of degenerate facets (the present author suspects that it would).

5.4 More than three punctures

In principle, although they cannot be properly visualized, one could try to understand
the higher-dimensional fans arising from surfaces with more than three punctures by
looking at the coordinates of their cones. However, already in the simplest case – a
sphere with four punctures (i.e. a tetrahedron) with all edge lengths set to one – the
fan already has 47 cones, making this task quite intimidating.

We can, of course, obtain a crude visualization of such a four-dimensional fan, which
is a partition of a 3-simplex after projection, by projecting it onto one of the faces of
the 3-simplex. The result for the sphere with four punctures is shown in figure 17. Note
that, due to symmetry, the same picture arises, regardless of which face we project onto.

It’s hard to say much about such a picture, as pretty as it is. We can see a cube in
the center, corresponding to the initial triangulation, each of whose six sides corresponds
to one of the six edges of the triangulation.

Another interesting fact which can be mentioned for this case, is that none of the
facets are degenerate (i.e. require multiple flips). We might be eager to conclude from
this that degenerate facets are a special feature of three-dimensional fans.

Unfortunately, the standard fan (show in figure 18) of the torus with four punctures
(a triangulation of which is obtained by representing it as a square with glued sides and
drawing edges from the center to each corner and the center of each side) does have
degenerate faces. Also, projection onto different faces produces different pictures, unlike
the above case.
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Figure 17: The standard fan of the sphere with four punctures

Figure 18: The standard fan of the torus with four punctures. Here, two projections are
shown. The other two are the same as these.

6 The future

This investigation into the secondary fans of Riemann surfaces has generated more ques-
tions than it has answered. One question is whether any surfaces allow such a complete
characterization of their secondary fans as the thrice-punctured sphere. Another is the
question above regarding multiple non-commuting flips at a facet – whether they always
all need to be performed, or whether performing certain flips can remove the necessity
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of others (or necessitate new flips).
Another question is whether enough asymmetry can always be introduced to remove

the need for multiple simultaneous flips, and whether the corresponding fan is then
essentially unique to the surface, all other fans being obtained by “degenerating” certain
of its cones.

There is also the question as to whether the secondary fan of a Riemann surfaces
is always the normal fan to some polyhedron, as in the case of secondary fans of plane
point sets.

Additionally, there may still be valuable knowledge to be gained from the soft-
ware. The reader is heartily encouraged to try it out and experiment with and im-
prove it. A three-dimensional graphical visualization for four- or higher-dimensional
fans would be neat, for instance. To obtain the source code, clone the git repository at
http://www-pool.math.tu-berlin.de/~helfer/bachelor.git or contact the author
at helfer@math.tu-berlin.de.
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7 Deutsche Zusammenfassung

Hier werden die wesentlichen Begriffe und Ergebnisse der Arbeit in deutscher Sprache
zusammengefasst.

Ins Deutsche übersetzt ist der Titel “Der Sekundärfächer einer punktierten rie-
mannschen Fläche”. Dies ist eine Verallgemeinerung einer anderen Konstruktion von
Gelfand, Kapranov und Zelevinsky, die auch “Sekundärfächer” heißt. Der Inhalt der
Arbeit besteht darin, die ursprüngliche Konstruktion und diese Verallgemeinerung zu
erläutern und ein Programm zu beschreiben, das diesen verallgemeinerten Sekundärfächer
berechnet und anschließend einige Ergebnisse des Programms zu untersuchen.

Ein “Fächer” (oder genauer, “polygonaler Fächer”) ist eine Menge von “Kegeln” (das
heißt, skalierungsinvariante Gebiete) in Rn, die den Raum überdecken und bestimmten
Bedingungen erfüllen, analog zu denen eines Simplizialkomplexes.

Der Sekundärfächer von Gelfand, Kapranov und Zelevinsky assoziiert zu einer gegebe-
nen endlichen Punktmenge in der Ebene einen bestimmten Fächer. Dies geschieht in-
direkt: zuerst wird der Punktmenge ein bestimmtes Polytop, das “Sekundärpolytop”,
zugeordnet, . Aus dem Polytop entsteht dann durch eine Standardkonstruktion (der
“Normalfächer”zu einem Polytop) das Sekundärpolytop.

Der Sekundärfächer dient der Klassifizierung bestimmter Triangulieren der Punkt-
menge, der sogenannten “kohärenten Triangulierungen”. Es wird nämlich gezeigt, dass
jeder maximale Kegel im Fächer (d.h., ein Kegel der Dimension n, wobei der Fächer
in Rn ist) entspricht einer kohärenten Triangulierung der Punktmenge, und zwar so,
dass benachbarte maximale Kegel Triangulierungen entsprechen, die sich durch eine
bestimmte einfache Transformation unterscheiden.

Zunächst betrachten wir punktierte riemannschen Flächen, d.h. solche, die (als
topologisch Flächen) entstehen durch Entfernung endlich vieler Punkte von einer kom-
pakten Fläche. Für unsere Zwecke betrachten wir nur solche Flächen, von denen genug
Punkte entfernt sind, dass sie eine Metrik überall negativer Krümmung zulassen.

Hierbei wird die Punktmenge in der Ebene durch die Punktierungen der Fläche er-
setzt und wir bekommen dann einen Fächer (hier, eigentlich in einem Rn>0), deren max-
imalen Kegel bestimmten Triangulierungen der Punktierungen der Fläche entsprechen.
Hier sind die betroffenen Triangulierungen eine Verallgemeinerung von kohärente Trian-
gulierungen, die “Delaunay Triangulierungen” heißen. In diesem Fall lässt sich die Rela-
tion zwischen Triangulierungen, deren Kegel benachbart sind, sehr einfach beschreiben:
die eine entsteht aus der anderen, in dem man eine endliche Anzahl an “Flips” macht;
d.h., man nimmt eine Kante aus der Triangulierung, und ersetzt sie durch die andere
Diagonale des entstandenen Vierecks.

Das Programm zur Berechnung des Sekundärfächers nimmt als Eingabe eine punk-
tierte riemannschen Fläche, zusammen mit vorgegebener Triangulierung. Dabei ist
das theoretische Resultat von R. C. Penner ausschlaggebend, dass alle punktierten rie-
mannschen Flächen vollständig durch Angabe einer Triangulierung zusammen mit bes-
timmten “Gewichten” (also, positiven reellen Zahlen) auf jeder Kante zu beschreiben
sind.

Die Berechnung des Fächers erfolgt dann folgendermaßen: zuerst wird der Kegel
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berechnet, der der Anfangstriangulierung entspricht. Die benachbarten Triangulierun-
gen werden dann gefunden, indem die entsprechenden “Flips” gemacht werden. Eine
rekursive Suche findet dann alle Kegel im Fächer.

Anschließend werden ein paar Beispielsfächer gezeigt und untersucht. Dabei werden
nur Fächer für dreimal punktierte Flächen gezeigt, weil sie diejenigen sind, die man in
zwei Dimensionen darstellen kann.

Für die dreimal punktierte Sphäre wird ein Fächer gezeigt, und es wird bewiesen,
dass die Fächer für alle dreimal punktierte Sphären im wesentlich die gleiche sehr ein-
fache und vollkommen zu verstehende Struktur haben.

Zunächst wird ein Fächer für den dreimal punktierten Torus gezeigt, der dem der
Sphäre identisch ist. Es wird dann gezeigt, dass dreimal punktierte Tori auch deutlich
kompliziertere Fächer haben können, mit vielen nicht trivialen Eigenschaften. Insgesamt
kann man nicht so vollkommene Aussagen über den Torus machen, wie über die Sphäre.

Es werden einige Fächer von Flächen höheren Geschlechts gezeigt. Über diese ist
aber noch weniger auszusagen, als über den Torus. Allerdings kann man sehen, dass alle
Flächen ungeraden Geschlechts eine einfache und sehr symmetrische Metrik zulassen, so
dass der Sekundärfächer derselbe einfache Fächer ist, der bei der Sphäre und dem Torus
auftauchte.

Zum Schluß wird ein bisschen zu Fächern höherer Dimension gesagt. Die kann
man näherungsweise in zwei Dimensionen Anschauen, aber über sie ist abermals wenig
auszusagen.
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